
Proceedings of the ESSLLI 2022 Student Session, 110–120
doi.org/10.21942/uva.20368209

Py⋆ : Formalization of Python’s Verifiable
Bytecode and Virtual Machine in F⋆

Ammar Karkour
akarkour@andrew.cmu.edu

Carnegie Mellon University, Qatar

Abstract. In order to avoid implementation bugs and inconsistencies
of defining programming languages, computer scientists define formal
semantics rules that guide the implementation process. In the case of
Python, it lacks a formal implementation as it doesn’t have formal se-
mantics that describe the behavior of its complex functionalities. Previ-
ous attempts to provide formal implementation for Python didn’t fully
succeed. Since direct formalization of Python source code is hard, in this
project, we define formal semantics rules for Python’s Bytecode instead,
and embed them in the theorem prover F⋆. Following that we extract
efficient executable OCaml code of our embedding, which could be used
to interpret Python Bytecode and to find bugs in other interpreters.

Keywords: Formal Semantics · Programming Languages · Python · F⋆

1 Introduction

When writing a program, it is very important that the written code matches its
specifications. By doing this, we have the potential of eliminating software bugs
that cost around $1.56 trillion yearly [1]. Similarly, it is hard to trust any program
written in a language that does not match its own specifications. To address
this problem, computer scientists formalize programming languages using formal
semantics rules that describe how each expression in the language behave. These
guide the implementation process through eliminating ambiguities.

The comparisons between different C compilers such as LLVM, GCC, and
CompCert provide strong evidence of the power of formalization and verification
to reduce implementation errors [11]. Having formally verified compilers guaran-
tees a trustworthy execution machinery, and helps in finding bugs in non-verified
compilers and interpreters. For example, CompCert reported 325 new bugs to
compiler developers through comparing the results of running correct randomly
generated C code on CompCert against other commonly used C compilers [11].

Python is one of the most used programming languages across industry, sci-
ence, education, and many other fields. This heavy dependence on the language
makes a trustworthy execution machinery very critical and highly valuable. How-
ever, a closer look at Python’s virtual machines shows that this confidence is un-
warranted, as through abuse of implementation errors, faults could be exploited
and attackers can hijack victim devices through arbitrary code execution [4,6,7].

©2022 Ammar Karkour
This is an open-access article licensed under a Creative Commons Attribution 4.0
International License.

https://2022.esslli.eu/courses-workshops-accepted/student-session.html
https://doi.org/10.21942/uva.20368209
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Py⋆ : Formalization of Python’s Verifiable Bytecode and Virtual Machine in F⋆

Even though Python has become one of the most important languages, it still
lacks a formal implementation and certain formal verification methods because
it was not designed with formal rigor. This is the reason that Python still lacks
formal semantics that formalizes and describes the behavior of its complex func-
tionalities. Instead, Python’s semantics is described in a documentation written
in English (natural language), which suffers from several problems compared
to formal semantics. The first problem is that written documentation could be
interpreted differently depending on who is reading it. Secondly, they are not
precise nor accurate, which makes keeping track of all different states and cases
nearly impossible.

Examples of the problems of Python’s documentation include: how the doc-
umentation of the Bytecode instruction LOAD FAST is not consistent with the
implementation, how the documentation of the compare operations is vague,
and how the documentation of eq () is not precise and can easily deceive a
programmer into making hard to find bugs. Check Appendix A for more details
about these examples.

Formalizing Python source code is hard because of its many complex func-
tionalities and inconsistencies, so a more realistic and attainable goal is to for-
malize Python’s Bytecode. This way we focus on a smaller set of simpler in-
structions, that are easier to formalize and formally verify. Moreover, in the end,
Bytecode is what is being executed by the interpreter. Therefore, the goal of
the project is: implementing an efficient verified embedding of Python’s
virtual machine and verifiable Python’s Bytecode in F⋆. We call this
implementation Py⋆ .

F⋆ (pronounced F star) is a general-purpose functional programming lan-
guage with effects aimed at program verification. It puts together the automa-
tion of an SMT-backed deductive verification tool with the expressive power of
a proof assistant based on dependent types. After verification, F⋆ programs can
be extracted to efficient OCaml, F#, C, WASM, or ASM code. This enables
verifying the functional correctness and security of realistic applications [3]. F⋆
has been successfully used for multiple formalization and verification projects in
the field of programming languages and software security. One of these projects
is the embedding of verifiable Assembly in F⋆, which has a very similar goal to
our project Py⋆ [5].

The contribution of this paper conatins the development of three parts: (1)
defining formal semantics rules for Python’s Bytecode, (2) embedding Python’s
Bytecode and implementing the virtual machine in F⋆, then proving that our
implementation matches the defined formal semantics using F⋆’s automated the-
orem prover Z3, (3) extracting an efficient executable code of the formalized
virtual machine in OCaml using F⋆ code extraction tool.

Py⋆ code can be found here.1

1 https://github.com/ammarkarkour/PyStar

111

https://github.com/ammarkarkour/PyStar
https://github.com/ammarkarkour/PyStar

Ammar Karkour

Fig. 1. Overview of Py⋆

2 Related Work

A previous attempt to formalize Python was made in [10], where the authors
introduced small-step semantics rules for Python and implemented a subset of
these semantics as a core language. They also present a translation process from
Python source code to their core language. However, that core language is not
exactly Python, but rather a different language that Python code needs to be
translated to before running it. Moreover, several features of Python and the
defined semantics were left unimplemented or unfinished, such as special fields
and complex scope cases. Lastly, the resulting interpreter suffered a performance
hit, because the translation process to the target language was too costly. For
instance, test cases that usually take a few seconds to be executed with cpython,
took around 20 minutes [10]. Since Py⋆ does not have the translation process,
it will be interesting to compare its performance with the performance of their
formalization.

In his PhD thesis [8], Monat defined concrete semantics of a large subset of
Python source code, with the goal of statically analyzing Python code to avoid
software faults. In his thesis he describes the implementation of the abstracted
rules in Mopsa. However, even though the provided concrete formal semantics
cover most of Python’s features, it is not executable in itself. Instead, they test
it through Python’s value analysis in Mopsa, which is a close implementation
that perform over-approximations. Implementing an executable version of the
defined concrete semantics and proving its correctness is left as future work.

The clear difficulty of direct formalization of languages like Python resulted
in a goal switch: from formalizing the whole language, to formalizing its exe-
cution model. In 2021, Desharnais and Brunthaler presented a system where

112

Py⋆ : Formalization of Python’s Verifiable Bytecode and Virtual Machine in F⋆

Fig. 2. Python Code Execution Mechanism

they defined an alternative self-optimizing Bytecode interpreter for dynamically
typed programming languages in the proof assistant Isabelle/HOL [4]. Their in-
terpreter consists of three Bytecode languages and their virtual machines that
support Just-In-Time (Jit) compilation. Even though the default implementa-
tion of Python (cpython) does not support Jit compilation, they mentioned that
the overall idea and approach used in implementing their interpreter could be
used for implementing a verified Python virtual machine.

3 Formal Semantics

Even though Python doesn’t have formal semantics, it has a default implemen-
tation – cpython. We focus on cpython version 3.9 (released in October 2020).
Through analyzing the source code of Bytecode evaluation in cpython and its
documentation, we understood the behavior of Python and formalized it using
small-step semantic rules.

To be executed, Python source code is first translated into a code object.
The virtual machine holds the code object to be executed and a call stack. The
call stack manages frames. Frames are created and deleted during execution,
and they are used to provide context for Bytecode blocks (see Figure 3). In other
words, a frame acts as the program state of a Bytecode block.

Once the virtual machine is created it spawns the initial frame to run the
Bytecode of the code object in it. The virtual machine starts the execution
process which involves spawning new frames, executing them and then returning
the results to caller frames. Once the initial frame returns a result, the execution
process ends and the interpreter returns the result (see Figure 2).

Our small-step semantics consist of two levels (i.e. two types of rules), Frame
Instructions, and Bytecode Instructions. The former describes how frames

113

Ammar Karkour

Fig. 3. Python Virtual Machine

are managed and how they interact with each other (i.e. data flow between
frames). The latter describes the execution steps for each Bytecode instruction
(i.e. execution within the frames).

3.1 Notation

In this section we introduce the notation used in the small-step semantics. We
assume that equality is commutative in all rules.

The call stack has two states: an evaluation state K ▷ f, and a return state
K ◁ ret(v), where K is a stack of frames, f is a frame, and v is a value. During
the evaluation state we evaluate the frame f until it becomes ret(v), switching
to the return state. The empty stack is denoted ϵ.

Frames are represented by a tuple ⟨φ, Γ, i, β,∆⟩, where:

φ ≜ ⟨Σg,Σl,Σl+⟩ : Contexts ≜ ⟨ global names, local names, local+ 2 ⟩
Γ≜ ⟨Π,Σc,Σv,Σn⟩ : Code Object ≜ ⟨ Bytecode, constants, varnames, names ⟩

i : Program Counter

β ≜ ⟨t, l, h⟩ : Block Object ≜ ⟨ type, level, handler ⟩
∆ : Data Stack

Frame level semantics use 7−→ to indicate stepping, while Bytecode instruc-

tions level use
Γ.Π[i]7−−−−→ to indicate stepping.

Python is an object-oriented language where all entities in it are objects.
Objects in Python belong to either a built-in class or a user-defined class. Two
things are needed to create an object, the class of the object, and the value of

2 This field enables the evaluation loop to optimize loading and storing values of names
to and from the value stack with the LOAD FAST and STORE FAST instructions.

114

Py⋆ : Formalization of Python’s Verifiable Bytecode and Virtual Machine in F⋆

the object. Both of these two things form the type of the object. For example,
the number 5 in Python is an object that belongs to the class INT and has a
value of 5, so its type is INT(5). To formalize this relation, we use the following
auxiliary terms:

T : Builtin classes: {INT, BOOL, STRING, LIST, TUPLE, DICT, FUNCTION, NONE}
USERDEF : User-defined class
C(val) : Type constructor, where C ∈ T or C = USERDEF, and val is value

CreateObj(t) : Object constructor: takes in C(val) and constructs an object

TypeOf(obj) : Object destructor ≜ Takes an object as an input and returns C(val)

3.2 Frame Instructions

Frame Instructions describe how frames are managed and how they interact with
each other (i.e. data flow between frames). To demonstrate how these rules work,
we explain Rule 4 as an example. In Rule 4, the call stack is in a return state
where the evaluation of frame ⟨φ, Γ, i, β, v :: ∆⟩ just finished, and it must return
to its caller stack. The premise of the Rule ensures that the returned value is not
a frame (that would need to be spawned). If that is the case, the top element v
on the data stack is pushed to the data stack of the caller frame, the returned
frame is discarded, and execution continues on an evaluation state of the caller
frame. In addition, Rule 1 denotes function execution, Rule 2 denotes a function
return, and Rule 3 a function call.

Frame Rules

⟨φ, Γ, i, β,∆⟩ Γ.Π[i]7−−−−→ ⟨φn, Γn, in, βn,∆n⟩
K ▷ ⟨φ, Γ, i, β,∆⟩ 7−→ K ▷ ⟨φn, Γn, in, βn,∆n⟩ (1)

⟨φ, Γ, i, β,∆⟩ Γ.Π[i]7−−−−→ ret(⟨φn, Γn, in, βn,∆n⟩)
K ▷ ⟨φ, Γ, i, β,∆⟩ 7−→ K ◁ ret(⟨φn, Γn, in, βn,∆n⟩) (2)

K ◁ ret(⟨φ, Γ, i, β, ⟨φn, Γn, in, βn,∆n⟩ :: ∆⟩) 7−→ K; ⟨φ, Γ, i+ 1, β,∆⟩ ▷ ⟨φn, Γn, in, βn,∆n⟩
(3)

v ̸= FRAMEOBJECT(fo)

K; ⟨φp, Γp, ip, βp,∆p⟩ ◁ ret(⟨φ, Γ, i, β, v :: ∆⟩) 7−→ K ▷ ⟨φp, Γp, ip, βp, v :: ∆p⟩ (4)

3.3 Bytecode Instructions

As the number of rules for this section is big, we only include an example of
rules in each class. The rest of the rules are either included in this file 3, or they
follow the same structure as the mentioned rules so they are not included.

Bytecode Instructions describe the execution steps for each Bytecode instruc-
tion (i.e. execution within the frames). They are divided into mainly 4 categories
(General, Unary, Binary, and Miscellaneous) based on their functionalities as the

3 https://github.com/ammarkarkour/PyStar/blob/main/formal_semantics.pdf

115

https://github.com/ammarkarkour/PyStar/blob/main/formal_semantics.pdf
https://github.com/ammarkarkour/PyStar/blob/main/formal_semantics.pdf

Ammar Karkour

rules show. To demonstrate how these rules work, we explain how Rule 9 works
as an example. Rule 9 states that if the current Bytecode instruction that the
program counter i pointing to is BUILD LIST(n), and the data stack contains at
least n elements, then we pop these n elements and we create a list that contains
them LIST([v1, ..., vn]). Following that, we push the created list back to the data
stack, and we increment the program counter by 1.

Similarly, Rule 5 denotes raising an error, Rule 6 denotes removing the top
element in the data stack, Rule 7 denotes Python’s logical not, Rule 8 denotes
Python’s floor division (i.e., //), and Rule 10 denotes the Bytecode instruction
for functions calls.

General Instructions

⟨φ, Γ, i, β, ERR(s) :: ∆⟩ Γ.Π[i]7−−−−→ ret(⟨φ, Γ, i, β, ERR(s) :: ∆⟩) (5)

⟨φ, Γ, i, β, v :: ∆⟩ Γ.Π[i]=POP TOP7−−−−−−−−−→ ⟨φ, Γ, i+ 1, β,∆⟩ (6)

Unary Instructions

not v = C(v′) v′′ = CreateObj(C(v′))

⟨φ, Γ, i, β, v :: ∆⟩ Γ.Π[i]=UNARY NOT7−−−−−−−−−−→ ⟨φ, Γ, i+ 1, β, v′′ :: ∆⟩ (7)

v = INT(v̄) v̄ = 0

not v = BOOL(true)

v = STRING(s̄) s̄ ̸= ""

not v = BOOL(false)

v = BOOL(true)

not v = BOOL(false)

Binary Instructions

TypeOf(v1) = C() C ∈ T TypeOf(v2) = C’() C’ ∈ T v2/v1 = C’’(v) v′ = CreateObj(C’’(v))

⟨φ, Γ, i, β, v1 :: v2 :: ∆⟩ Γ.Π[i]=BINARY FLOOR DIVIDE7−−−−−−−−−−−−−−−−→ ⟨φ, Γ, i+ 1, β, v′ :: ∆⟩
(8)

v1 = INT(v̄1) v2 = INT(v̄2) v̄1 ̸= 0 v′ = v̄2/v̄1

v2/v1 = INT(v′)

v1 = INT(v̄1) v2 = INT(v̄2) v̄1 = 0

v2/v1 = ERR(s)

Miscellaneous opcodes

l = LIST([v1, ..., vn])

⟨φ, Γ, i, β, v1 :: ... :: vn :: ∆⟩ Γ.Π[i]=BUILD LIST(n)7−−−−−−−−−−−−−→ ⟨φ, Γ, i+ 1, β, l :: ∆⟩ (9)

v = CODEOBJECT(c̄o) f = ⟨⟨φ.Σg, {}, [vn, ..., v1]⟩, c̄o, 0, [], []⟩

⟨φ, Γ, i, β, v1 :: ... :: vn :: v :: ∆⟩ Γ.Π[i]=CALL FUNCTION(n)7−−−−−−−−−−−−−−−→ ret(⟨φ, Γ, i, β, f :: ∆⟩) (10)

116

Py⋆ : Formalization of Python’s Verifiable Bytecode and Virtual Machine in F⋆

4 Implementation

The first step of implementing the virtual machine according the formal seman-
tics defined in Section 3 is embedding the types and objects in F⋆. To do that
we use F⋆’s typing system to represent the different components of the virtual
machine. In this section we discuss the embedded types and objects that are
currently supported by Py⋆ (see Appendix A for the full embedding).

Bytecode is encoded as values of type bytecode constructed as CODE l. Each
bytecode instruction has type opcode and l has type list opcode.

type opcode = | NOP: opcode

| POP_TOP: opcode

| ROT_TWO: opcode

| ROT_THREE: opcode

...

type bytecode = | CODE: l: list opcode -> bytecode

The virtual machine contains different stacks that manage the values needed
during evaluation. All values stored in these stacks have type pyObj. pyObj has
3 constructors: PYTYP(obj), CODEOBJECT(co), and FRAMEOBJECT(fo).

Python classes are records of type cls which includes a name; a process ID
(pid); a value (used for builtin classes, e.g., int); and fields and methods which
store the class’ fields and methods. We use F⋆’s Map module for mapping names
of fields and methods to their values. Following the literature [9], we represent
classes as records.

type cls = { name: string;

pid: int;

value: builtins;

fields: Map.t string pyObj;

methods: Map.t string pyObj }

PYTYP(obj) is the type of every object in a Python program, where obj is of type
cls, be it from a user-defined class or a built-in type. Classes and objects are
formalized in F⋆ as types and values of these types, respectively.

CODEOBJECT(co) is the input for the virtual machine. It is represented by a record
with four fields: co code contains the Bytecode that will be executed in the
initial frame; co consts contains constants like string literals, numeric values,
and other code objects that are needed for execution; co varnames contains
locally defined names in a code block; finally co names contains a collection of
non-local names used within the code object.

type codeObj = { co_code: bytecode;

co_consts: list pyObj;

co_varnames: list string;

co_names: list string; }

117

Ammar Karkour

FRAMEOBJECT(fo) As shown in section 3, a frame acts as a program state for a
Bytecode block. The representation comes directly from the rules explained in
section 3.1. Records are also used to represent a frame, as shown below.

type frameObj = { dataStack: list pyObj;

blockStack: list blockObj;

fCode: codeObj;

pc: nat;

f_localplus: list pyObj;

f_globals: Map.t string pyObj;

f_locals: Map.t string pyObj; }

4.1 Execution and Formal Verification

Py⋆ runs a frame by traversing its Bytecode instructions using the program
counter. Each instruction is executed by a helper function that takes as input
only what is needed for that instruction. It returns the updated components
after the instruction is executed.

Through its syntax and semantics, formal semantics rules contain the prop-
erties that state the correct behavior of the Bytecode instructions. To ensure
that our implementation has the properties that our rules state, we use F⋆’s
dependent types and automatic theorem prover (Z3) to enforce the properties at
type checking. More specifically, we deduce pre-conditions and post-conditions
from the formal semantics rules, and we ensure that the helper functions that
correspond to these rules respect them through their types.

For example, the type of the helper function that implements the instruction
POP TOP ensures that given a datastack that is not empty, it removes the top
element in the stack and returns the rest of the stack as described in rule 6.
Moreover, since the function is Total, no unexpected behavior will happen.

val pop_top: (l:list pyObj{Cons? l}) -> Tot (l2:list pyObj {l2==tail l})

let pop_top datastack = List.Tot.Base.tail datastack

5 Results and Conclusion

As far as we know, Py⋆ is the first formalization of Python’s bytecode. Using
the generated interpreter, Python programmers can safely run their code with-
out worrying about unexpected behavior. Computer scientists would find in our
formal semantics a precise explanation of the behavior of Python’s interpreter,
which could be used to guide the implementation of new Python interpreters. It
also could be used to find new bugs in current commonly used interpreters similar
to how CompCert did with different C compilers through an automated testing
pipeline. Lastly, since we have a function in F⋆ that runs Bytecode blocks, one
can use F⋆’s theorem proving modules to prove properties about such blocks.

118

Py⋆ : Formalization of Python’s Verifiable Bytecode and Virtual Machine in F⋆

Py⋆ currently supports a verified implementation of instructions that allow
us to interpret Python programs that contain ints, strings, bools, lists, dictionar-
ies, tuples, none, classes, exceptions, variable assignment, function calls, loops,
conditionals, and context switching. These features were also further tested using
a group of hand crafted test cases.

As future work, we are working on mainly three things: (1) supporting the rest
of Python’s features such as Floats and Sets by writing formal semantics rules
for them, implementing them, and proving that the implementation matches
the formal semantics; (2) more extensive testing for our system will be done
through cpython’s test kit that is full of different test cases that could be used
for correctness and performance checks; (3) implementing an automated testing
tool (similar to CompCert’s tool) that could be used to find bugs in other Python
interpreters 4. Lastly, it would be interesting to try proving properties about
different Bytecode blocks using F⋆’s proving modules.

References

1. https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf, accessed: 2022-3-21
2. dis — disassembler for python bytecode — python 3.10.3 documentation. https:

//docs.python.org/3/library/dis.html, accessed: 2022-3-21
3. F*: A Higher-Order Effectful Language Designed for Program Verification. https:

//www.fstar-lang.org/, accessed: 2021-12-10
4. Desharnais, M., Brunthaler, S.: Towards Efficient and Verified Virtual Machines

for Dynamic Languages. In: Proceedings of the 10th ACM SIGPLAN International
Conference on Certified Programs and Proofs. p. 61–75. CPP 2021, Association for
Computing Machinery (2021). https://doi.org/10.1145/3437992.3439923

5. Fromherz, A., Giannarakis, N., Hawblitzel, C., Parno, B., Rastogi, A., Swamy, N.:
A Verified, Efficient Embedding of a Verifiable Assembly Language. Proc. ACM
Program. Lang. 3(POPL) (2019). https://doi.org/10.1145/3290376

6. Groß, S.: JITSploitation I: A JIT Bug. https://googleprojectzero.blogspot.
com/2020/09/jitsploitation-one.html (2020), accessed: 2021-12-10

7. Groß, S.: JITSploitation III: Subverting Control Flow. https://

googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html

(2020), accessed: 2021-12-10
8. Monat, R.: Static type and value analysis by abstract interpretation of Python

programs with native C libraries. Ph.D. thesis, Sorbonne Université (2021)
9. Pierce, B.C.: Types and programming languages. MIT press (2002)

10. Politz, J.G., Martinez, A., Milano, M., Warren, S., Patterson, D., Li, J., Chitipothu,
A., Krishnamurthi, S.: Python: The Full Monty. In: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications. p. 217–232. OOPSLA ’13, Association for Computing
Machinery (2013). https://doi.org/10.1145/2509136.2509536

11. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and Understand-
ing Bugs in C Compilers. SIGPLAN Not. 46(6), 283–294 (2011).
https://doi.org/10.1145/1993316.1993532

4 Python interpreters that use cpython’s Bytecode, since not all interpreters use it.

119

https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://docs.python.org/3/library/dis.html
https://docs.python.org/3/library/dis.html
https://www.fstar-lang.org/
https://www.fstar-lang.org/
https://doi.org/10.1145/3437992.3439923
https://doi.org/10.1145/3290376
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-three.html
https://doi.org/10.1145/2509136.2509536
https://doi.org/10.1145/1993316.1993532

Ammar Karkour

A Issues in Python Documentation

In this Appendix we show some examples of the inconsistencies and ambiguities
that Python documentation contains.

– LOAD FAST var num
When executing Python source code, it first gets compiled into Bytecode
instructions, and then these instructions get executed by the interpreter
(i.e. Virtual Machine). LOAD FAST is one of these instructions. Python’s
documentation reads “LOAD FAST var num: Pushes a reference to the lo-
cal co varnames[var num] onto the stack” [2]. However, by taking a look
at Python’s default implementation (cpython), you can clearly see that
co varnames only stores the names not the values associated with these
names, and what really happens is that they load f localplus[var num]

to the stack. This is just one example of many where the description of a
Python instruction in the documentation is not consistent with the imple-
mentation, which could lead to different behaviors from different interpreters.

– compare operations
The documentation is also full of ambiguous descriptions. For example, they
state that “The <, <=, > and >= operators are only defined where they
make sense; for example, they raise a TypeError exception when one of the
arguments is a complex number” [2]. Such a sentence is very vague as they
do not define what makes sense means in this situation. These ambiguous
descriptions cannot be used to define something formal, and they form a big
danger as a source of potential implementation bugs.

– eq ()
Another example of how how the documentation can deceive a programmer
into making hard to find bugs is the documentation of eq (). The docu-
mentation states that “Non-identical instances of a class normally compare
as non-equal unless the class defines the eq () method” [2], which indi-
cates that if you don’t define the eq () method of a specific class then
a. eq (b) where a and b are objects of that class returns False. However,
in practice a. eq (b) returns NotImplemented, where NotImplemented is
a special value (not an error) that is usually returned in such situations.
Moreover NotImplemented has a Boolean value of True, so a. eq (b) al-
ways returns True. For example, the code shown below would actually print
SHOULD NOT HAPPEN.

class Car():

pass

a = Car()

b = Car()

if a.__eq__(b):

print("SHOULD NOT HAPPEN")

120

	Py : Formalization of Python's Verifiable Bytecode and Virtual Machine in F

