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Abstract. Combinatory categorial grammar (CCG) includes combina-
tors in addition to categorial grammar (CG), to accommodate various
linguistics phenomena. For example, the type-raising rule realized by a
combinator in CCG to exchange the argument–functor relation; such a
rule is generalized as continuation-passing style (CPS) transformation.
However, there is concern that CPS may exceedingly accept ungrammat-
ical sentences. In this paper, we investigate the expanded grammar rules
of CCG in terms of Lambek Calculus (LC), that is a formal system of
CG. First, we show that Barker’s CPS transformation is provable in LC
but Plotkin’s CPS transformation is not so. Second, we show a provable
subset of Plotkin’s CPS transformations . Due to the complexity of prov-
ing unprovability, we formalize the proof in Isabelle/HOL and verify it.
We show that this subset is a grammatical class represented in LC, and
call it type-restricted CPS transformation.

Keywords: CPS transformation · Lambek Calculus · Isabelle/HOL

1 Introduction

The ad-hoc grammar rules were employed to deal with linguistic phenomena into
categorial grammar (CG). Such haphazard introduction potentially exceeds the
original grammar class in Chomsky hierarchy, that is, the grammar rules may
over-generate ungrammatical sentences. For example, the subordinate clause
“that cat walks” is scrambled into “cat that walks” by the cross-composition
rule (Bx) [10].

that : SBAR/S
cat : NP walks : NP\S

<
catwalks : S

>
that catwalks : SBAR

cat : NP
that : SBAR/S walks : NP\S

> Bx
thatwalks : NP\SBAR

<
cat thatwalks : SBAR
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Unprovabiliy of Continuation-Passing Style Transformation in Lambek Calculus

Hence, we verify the generative power of added grammar rules using the formal
method. Our targets are CPS transformation rules investigated by Plotkin [8]
and Barker [1]. Note that there are differences for generative power between
them. The aim of this paper is to show that Plotkin’s CPS transformation rule
is unprovable in Lambek calculus [6], which is the mathematical formalization of
categorial grammar. Further, we show that these grammar rules might generate
inappropriate sentences from the unprovability.

There are two motivations for CPS transformation rule. One is to modify
the scope of quantifiers, and another is to extend grammar rules for a specific
linguistic phenomenon. Generally, the first motivation is not problematic because
it does not violate the original syntax theory. However, the second motivation is
disputable as to whether it solves only targeted phenomenon. For example, both
of the type-raising rule and the cross-composition rule are well-known grammar
rules in CG, however, actually, the former is provable in Lambek calculus while
the latter is not. The following proof is a usage of the CPS transformation rule.
In this paper, we regard that only those sentences provable by the calculus are
grammatical.

cat : NP CPS
cat : S/(NP\S) walks : NP\S

>
catwalks : S

Section 2 introduces the basic concepts of continuations in computer science
and Lambek calculus. Section 3 shows that the CPS transformation is unprovable
in Lambek calculus and the rule alternative to CPS transformation. Section 4
shows that the formalization of Lambek calculus in the proof assistant system
Isabelle/HOL and give the formal proof of all theorems in the present paper.

2 Preliminaries

2.1 Continuations in Lambda Calculus

First, we define the CPS transformation with untyped and simply-typed lambda
calculus, as defined in [4]. A usual computer program implicitly executes a code
sequentially step by step, however, in some cases, the order of execution may
change. The remained schedule of executions after the preempted execution is
called a continuation. Then, a computer program with an explicitly-mentioned
continuation is said to be in continuation-passing style (CPS). It was initially
investigated in the 1960’s [9], which is similar to the relationship goto – label in
the imperative programming language. We use the goto command to jump into
the next program execution declared by the label command, that is, we deal with
the goto command to continue to the next execution. We call this operation the
continuation. The continuations appear everywhere in the calculations because
the program is the chain of the execution commands and there implicitly exist
the continuations among executions.
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We, hereafter, use the lambda notation because the infix notation is not
usable to denote a form. Note that ‘add x y’ is x + y. Example 1 shows all
continuations in an arithmetic program.

Example 1 (Continuations in 1 + 2). The call-by-value interpreter of the arith-
metic program evaluates ‘add 1 2’ as follows. The continuation of Step 1 is
Step 2–3. Generally, the continuation of Step i is Step (i+ 1)–3.

1. Evaluate the integer 2
2. Evaluate the integer 1.
3. Evaluate the operator add.

add︸︷︷︸
3

1︸︷︷︸
2

2︸︷︷︸
1

Such as the arithmetic program, the form, in which the continuation is im-
plicitly appeared, is called the direct style (DS) [3]. On the other hand, we
introduce the form, in which the continuation is explicitly appeared, called the
continuation-passing style (CPS) [9,8]. The following is the CPS form of 1 + 2,
where add′ is also the CPS form of add.

λk.(λl.(λs.s add′)(λh.(λt.t1)(λi.hil)))(λm.(λu.u2)(λn.mnk))

1. λn.mnk is the continuation of 2.
2. λi.hil is the continuation of 1.
3. λh.(λt.t1)(λi.hil) is the continuation of add′.

The argument k represents the global continuation, which is resolved after the
all calculation is done. Note that the call-by-value interpreter runs the CPS form
in the reverse order (3–2–1) of the DS form because each term is deferred by the
lambda abstraction. After the last execution, we obtain the final result and its
type called the answer term and the answer type, respectively. This inversion is
introduced by Plotkin as follows.
Definition 1 (Plotkin’s CPS transformation [8]). [[·]] is recursively defined
as a map from a DS lambda term to a CPS lambda term, where x is a variable,
and M and N are meta variables. Further, m,n, k represent the continuations
of each term.

[[x]] ≡ λk.kx [[λx.M ]] ≡ λk.k(λx.[[M ]]) [[MN ]] ≡ λk.[[M ]](λm.[[N ]](λn.mnk))

The original CPS transformation in Definition 1 is defined in untyped-lambda
calculus. Here, we consider the type of the transformation in simply-typed lambda
calculus. We define ⟨⟨·⟩⟩ as the transformation on the level of types, corresponding
to [[·]] in Definition 1.
Definition 2 (Type of Plotkin’s CPS transformation [2]). ⟨⟨·⟩⟩ is mutually
defined with ⟨·⟩, where capital letters are types of simply-typed lambda calculus.
Further, A is the answer type uniquely determined in the global context.

⟨⟨X⟩⟩A = (⟨X⟩A → A) → A ⟨X → Y ⟩A = ⟨X⟩A → ⟨⟨Y ⟩⟩A ⟨Z⟩A = Z (Z is atomic)
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In combinatory categorial grammar (CCG), we say that a grammar rule is
CPS transformation, if the category of a grammar rule is translated into a type
in Definition 2. In addition to Plotkin’s CPS transformation, the following is
another transformation motivated by the linguistic observation.

Definition 3 (Barker’s CPS transformation [1]). [[ · ]] is recursively defined
as a map from a DS lambda term to a CPS lambda term, where a is an arbi-
trary constant, and M and N are meta variables. Further, m,n, k represent the
continuations of each term.

[[a]] ≡ λk.ka [[MN ]] ≡ λk.[[M ]](λm.[[N ]](λn.kmn))

In Definition 3, the lambda abstraction from the CPS transformation is omitted
and also the continuation of N is rearranged from λn.mnk to λn.kmn. Since the
k is the continuation of given term, it should be placed at the end of the form
mnk as an argument for continuation-passing style term. The remarkable point
of Barker’s CPS transformation is not in this order. As a result, types in the
transformation are simplified as follows. We define ⟨⟨ · ⟩⟩ as the transformation
on the level of types, corresponding to [[ · ]] in Definition 3.

Definition 4 (Type of Barker’s CPS transformation [1]). ⟨⟨·⟩⟩ is defined as
follows, where capital letters are types of simply-typed lambda calculus. Further,
A is the answer type uniquely determined in the global context.

⟨⟨X⟩⟩A = (X → A)→ A

The type of Barker’s CPS transformation is exactly the same as the type-raising
rule.

2.2 Lambek Calculus

In this paper, we write α/β and β\α as the implication from β to α.

Definition 5 (Lambek Calculus LC [6,5]). Lambek calculus LC is defined as
a sequent calculus, which consists of atomic terms, right functional terms ·\·,
and left functional terms ·/·. The following are an initial sequent and deduction
rules. A lower Greek letter is a term for a sequent and a capital Greek letter is
a sequence of terms.

Id
α ⊢ α

Σ ⊢ α Γ, α,∆ ⊢ β
Cut

Γ,Σ,∆ ⊢ β

Γ, α ⊢ β
I/

Γ ⊢ β/α

α,Γ ⊢ β
I\

Γ ⊢ α\β
Σ ⊢ α Γ, β,∆ ⊢ γ

\I
Γ,Σ, α\β,∆ ⊢ γ

Γ, β,∆ ⊢ γ Σ ⊢ α
/I

Γ, β/α,Σ,∆ ⊢ γ
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LC is the mathematical formalization of categorial grammar (CG). Hence, some
of CCG rules are provable in this system. For instance, the application is prov-
able.

α ⊢ α β ⊢ β \I
α, α\β ⊢ β

In Definition 5, we have included Cut in the basic rules, however, it is known
that we can exclude Cut from the basic rules [6]. Hereafter, we omit Cut from
LC for the sake of brevity. Since the Cut rule produces a type which does not
appear in the conclusion, We show two lemmas that one is provable and another
is unprovable in LC.

Lemma 1 (Provability of type-raising in LC). NP ⇒ S/(NP\S) is a type-
raising rule, which switches the biting relation from ‘NP NP\S’ to
‘S/(NP\S) NP\S’. Then, the sequent α ⊢ β/(α\β) and α ⊢ (β/α)\β are
provable in LC.

Proof. The following is a proof of the type-raising rules in LC.

α ⊢ α β ⊢ β
\I

α, α\β ⊢ β
I/

α ⊢ β/(α\β)

α ⊢ α β ⊢ β
/I

α/β, β ⊢ β
I\

α ⊢ (β/α)\β

⊓⊔

Lemma 2 (Unprovability of cross-composition in LC).
The sequent α/β, α\γ ⊢ γ/β is unprovable in LC.

Proof (Sketch). We must show that there is no way to derive the goal sequent
from the initial sequent. For instance, there are three forms of sequents that
are unprovable in LC as follows, where the atomic term φ is different from the
atomic term ψ. The third form below, for example, is derived from φ ⊢ φ and
⊢ ψ, which are reduced to another unprovable sequent.

⊢ φ φ ⊢ ψ φ,ψ ⊢ φ

We search all the possible rule applications in LC and show that each derivation
path closes with an unprovable sequent. Assume that α, β, γ are atomic. In Fig. 1,
we show a graph of derivation paths from the goal sequent p2. Note that the
sequent is unprovable if at least one sequent in presumptions is unprovable. The
red edge is I\. The blue edge is I/. The green edge is \I. The purple edge is /I.
All leaves close with the unprovable sequent.
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Fig. 1. Unprovability of cross-composition

p9 : ⊢ β p6 :α/β ⊢ α p10 : ⊢ α p15 :γ, β ⊢ γ
p12 :α, a\γ, β ⊢ γ p16 :α, β ⊢ γ p17 :α ⊢ γ p4 :α/β, α\γ, β ⊢ γ
p23 :γ ⊢ γ/β p19 :α, a\γ ⊢ γ/β p25 :α ⊢ γ/β p2 :α/β, α\γ ⊢ γ/b

⊓⊔

3 Provability of CPS Transformation

The type of lambda calculus is not directed, while LC is two-directional. In other
words, if we translate the type properties of the lambda calculus into LC, there
are multiple possible choices of translations. Thus, the CPS transformation is
not unique in LC. For instance, Barker’s CPS transformation becomes as follows.

α ⊢ β/(α\β) α ⊢ (β/α)\β

The above only two transformations are introduced as the CPS transforma-
tions [1] because the both sequence are provable by Lemma 1. Thus, the Barker’s
CPS transformation is harmless as to provability in Lambek calculus if we add
them as a basic rule. However, other variations α ⊢ β\(β\α), α ⊢ (α/β)/β, and
Plotkin’s CPS transformation are not.

Definition 6 (Plotkin’s CPS transformation in LC). Let γ be an answer
type and A be a set of all atomic terms of LC. Two relations · γ−→ · and · γ−⇀ · are
inductively defined as ⟨⟨·⟩⟩ and ⟨·⟩, respectively.

α
γ−→ τ

α
γ−→ γ/(τ\γ)

α
γ−→ τ

α
γ−→ (γ/τ)\γ

α ∈ A

α
γ−⇀ α

α
γ−⇀ τ β

γ−→ υ

α\β γ−⇀ τ\υ
α

γ−⇀ τ β
γ−→ υ

β/α
γ−⇀ υ/τ
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Compared to the Barker’s CPS transformation, we execute the transforma-
tion recursively. Thus, the size of resulting term increases exponentially. More-
over, we must try all possible rules to find a derivation path from the goal sequent
to leaves. Since the generated proof is lengthy, we only show the graph of the
unprovable derivation paths (see Fig. 2).

Theorem 1 (Unprovability of Plotkin’s CPS transformation in LC).
There exists an unprovable sequent φ ⊢ ψ even if φ δ−→ ψ, where δ is an answer
type.

Proof (Sketch). We consider the sequent γ/(β/α) ⊢ ψ where α, β, γ are atomic
and
γ/(β/α)

δ−→ ψ . Here, ψ ≡ δ/(((δ/(γ\δ))/((δ/(β\δ))/α))\δ), which is a CPS-
transformed term. We search all the possible rule applications in LC and show
that each derivation path closes with an unprovable sequent.

p17 :γ, δ ⊢ γ p16 :γ, δ/(β\δ) ⊢ γ

p14 :γ, (δ/(β\δ))/α ⊢ γ p26 :δ, α ⊢ β

p27 :δ ⊢ β p25 :δ/(β\δ), α ⊢ β

p29 :δ/(β\δ) ⊢ β p23 :(δ/(β\δ))/α, α ⊢ β

p33 :δ ⊢ β/α p31 :δ/(β\δ) ⊢ β/α

p21 :(δ/(β\δ))/α ⊢ β/α p39 :γ/(β/α), δ ⊢ γ

p35 :γ/(β/α), δ/(β\δ) ⊢ γ p12 :γ/(β/α), (δ/(β\δ))/α ⊢ γ

p46 :δ ⊢ γ p45 :δ/(β\δ) ⊢ γ

p43 :(δ/(β\δ))/α ⊢ γ p47 : ⊢ γ

p53 :γ, δ, γ\δ ⊢ δ p54 :γ, δ ⊢ δ

p51 :γ, δ/(β\δ), γ\δ ⊢ δ p56 :γ, δ/(β\δ) ⊢ δ

p49 :γ, (δ/(β\δ))/α, γ\δ ⊢ δ p63 :γ ⊢ δ

p73 :γ/(β/α), δ, γ\δ ⊢ δ p81 :γ/(β/α), δ ⊢ δ

p65 :γ/(β/α), δ/(β\δ), γ\δ ⊢ δ p83 :γ/(β/α), δ/(β\δ) ⊢ δ

p10 :γ/(β/α), (δ/(β\δ))/α, γ\δ ⊢ δ p89 :γ, δ ⊢ δ/(γ\δ)
p87 :γ, δ/(β\δ) ⊢ δ/(γ\δ) p85 :γ, (δ/(β\δ))/α ⊢ δ/(γ\δ)

p109 :γ/(β/α), δ ⊢ δ/(γ\δ) p99 :γ/(β/α), δ/(β\δ) ⊢ δ/(γ\δ)
p8 :γ/(β/α), (δ/(β\δ))/α ⊢ δ/(γ\δ) p119 :γ ⊢ (δ/(γ\δ))/((δ/(β\δ))/α)
p6 :γ/(β/α) ⊢ (δ/(γ\δ))/((δ/(β\δ))/α) p129 :δ, γ\δ ⊢ δ

p136 :β ⊢ γ p135 :β, γ\δ ⊢ δ

p133 :γ\δ ⊢ β\δ p127 :δ/(β\δ), γ\δ ⊢ δ

p143 :β ⊢ δ p142 : ⊢ β\δ
p138 :δ/(β\δ) ⊢ δ p125 :(δ/(β\δ))/α, γ\δ ⊢ δ

p147 :δ ⊢ δ/(γ\δ) p145 :δ/(β\δ) ⊢ δ/(γ\δ)
p123 :(δ/(β\δ))/α ⊢ δ/(γ\δ) p121 : ⊢ (δ/(γ\δ))/((δ/(β\δ))/α)
p149 :γ, ((δ/(γ\δ))/((δ/(β\δ))/α))\δ ⊢ δ p4 :γ/(β/α), ((δ/(γ\δ))/((δ/(β\δ))/α))\δ ⊢ δ

p151 :γ ⊢ δ/(((δ/(γ\δ))/((δ/(β\δ))/α))\δ) p2 :γ/(β/α) ⊢ δ/(((δ/(γ\δ))/((δ/(β\δ))/α))\δ)
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Fig. 2. Proof of unprovability
⊓⊔

Thus far, we showed Baker’s CPS transformation is provable in LC and
Plotkin’s CPS transformation is not. Hereafter, we propose a moderate CPS
translation which is the same translation of Plotkin’s CPS transformation but
we restrict the types of lambda term. Our CPS translation is closer to Plotkin’s
CPS transformation than Barker’s, but is still provable in LC.

Here, we inductively define two relations · γ−→9 · and · γ−⇀9 · corresponding to
⟨⟨·⟩⟩ and ⟨·⟩, respectively.

Definition 7 (Type-restricted CPS transformation in LC). Let γ be an
answer type and A be a set of all atomic terms of LC. We inductively define two
relations · γ−→9 · and · γ−⇀9 · corresponding to ⟨⟨·⟩⟩ and ⟨·⟩, respectively.

α
γ−⇀9 τ

α
γ−→9 γ/(τ\γ)

α
γ−⇀9 τ

α
γ−→9 (γ/τ)\γ

α ∈ A

α
γ−⇀9 α

α ∈ A β
γ−→9 υ

α\β γ−⇀9 α\υ
α ∈ A β

γ−→9 υ

β/α
γ−⇀9 υ/α

Note that there is no transformation from a higher-order functional term,
which recursively takes other functional terms, e.g., γ/(β/α), that caused failure
of proof in Plotkin’s CPS transformation. Theorem 2 shows that the transfor-
mation in Definition 7 is provable in LC.

Theorem 2 (Provability of type-restricted CPS transformation in LC).
Let γ, φ and ψ be terms of LC. Then, (i) α ⊢ β if α γ−→9 β, and moreover, (ii)
α ⊢ β if α γ−⇀9 β.

Proof. We mutually prove both statements (i) and (ii) by mathematical induc-
tion with respect to the length of α.
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1. Assume that α is atomic.
(a) Assume α γ−⇀9 α. α ⊢ α holds.
(b) Assume α γ−→9 (γ/α)\γ. α ⊢ (γ/α)\γ holds by Lemma 1.
(c) Assume α γ−→9 γ/(α\γ). α ⊢ γ/(α\γ) holds by Lemma 1.

2. Assume α = β\δ and δ
γ−→9 η.

(a) Assume α γ−⇀9 β\η. As β is atomic by Definition 7, β ⊢ β holds.
Moreover, δ ⊢ η holds by the induction hypothesis. Thus, β\δ ⊢ β\η.

(b) Assume α γ−→9 γ/((β\η)\γ). As the same way as Proof 2a, β\δ ⊢ β\η.
Thus, α ⊢ γ/((β\η)\γ) holds by Lemma 1.

(c) Assume α γ−→9 (γ/(β\η))\γ. As the same way as Proof 2a, β\δ ⊢ β\η.
Thus, α ⊢ (γ/(β\η))\γ holds by Lemma 1.

3. Assume α = δ/β and δ
γ−→9 η

(a) Assume α γ−⇀9 η/β. As β is atomic by Definition 7, β ⊢ β holds. Moreover,
δ ⊢ η holds by the induction hypothesis. Thus δ/β ⊢ η/β.

(b) Assume α γ−→9 γ/((η/β)\γ). As the same way as Proof 3a, δ/β ⊢ η/β.
Thus, α ⊢ γ/((η/β)\γ) holds by Lemma 1.

(c) Assume α γ−→9 (γ/(η/β))\γ. As the same way as Proof 3a, δ/β ⊢ η/β.
Thus, α ⊢ (γ/(η/β))\γ holds by Lemma 1.

Therefore, (i) and (ii) hold. ⊓⊔

4 Formalization in Isabelle/HOL

We showed the sketches of proof for Lemma 1 and Theorem 1. In this section, we
verify them by Isabelle/HOL. Further, we also provide the proof of Theorem 2.
First, we translate Lambek calculus to Isabelle/HOL as follows. category is a
terminology of categorial grammar. It corresponds with a type of simply-typed
lambda calculus. In this section, we use ← and → instead of / and \ because it
is hard to use / and \ in Isabelle/HOL. Further, ^ is a mark to denote a symbol
as an atomic symbol.

datatype 'a category =
Atomic 'a ("^")
| RightFunctional "'a category" "'a category" (infix "→" 60)
| LeftFunctional "'a category" "'a category" (infix "←" 60)

We next define the system of Lambek calculus as follows. @ is a concate-
nation of a list data structures. [x]⊢x is a sequent x ⊢ x. Further, X@[x]⊢y
is a sequent X,x ⊢ x. ⟦...;...⟧ is a set of assumptions. ⟹ is an implication of
Isabelle/HOL. The following is a translation of Definition 5.
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inductive LC::
"'a category list ⇒ 'a category ⇒ bool" (infix "⊢" 55)
where
r1: "([x]⊢x)"
| r2: "(X@[x]⊢y) ⟹ (X⊢y←x)"
| r3: "([x]@X⊢y) ⟹ (X⊢x→y)"
| r4: "⟦(Y⊢y); (X@[x]@Z⊢z)⟧ ⟹ (X@Y@[y→x]@Z⊢z)"
| r5: "⟦(X@[x]@Z⊢z); (Y⊢y)⟧ ⟹ (X@[x←y]@Y@Z⊢z)"

By the above source code, we translate the proof sketch of Lemma 2. We show
the counter example of the statement that the cross composition is provable.
Let a,b,c be atomic and be different from each other. Then the following code
is the verification of Fig. 1 where subst,simp and simp_all are substitution
commands to modify the original statement to the simplified statement. auto
and fastforce are automatic deduction commands to test the provability.

theorem
assumes "distinct [a,b,c]"
shows "¬([^a←^b,^a→^c]⊢^c←^b)"
proof -
have p9: "¬([]⊢^b)"
apply auto apply(subst(asm)LC.simps)
by auto
have p6: "¬([^a← ^b]⊢^a)"
apply auto apply(subst(asm)LC.simps)
apply auto
by (simp add: p9 Cons_eq_append_conv)+
have p10: "¬([]⊢^a)"
apply auto apply(subst(asm)LC.simps)
by auto
have p15: "¬([^c,^b]⊢^c)"
apply auto apply(subst(asm)LC.simps)
apply auto
by (simp add: p10 Cons_eq_append_conv)+
have p12: "¬([^a,^a→ ^c,^b]⊢^c)"
apply auto apply(subst(asm)LC.simps)
apply auto
apply (simp_all add: Cons_eq_append_conv)+
using p10 p15 by fastforce
have p16: "¬([^a,^b]⊢^c)"
apply auto apply(subst(asm)LC.simps)
apply auto
by (simp_all add: Cons_eq_append_conv)+
have p17: "¬([^a]⊢^c)"
apply auto apply(subst(asm)LC.simps)

apply auto
apply (simp_all add: Cons_eq_append_conv)+
using assms by auto
have p4: "¬([^a← ^b,^a→ ^c,^b]⊢^c)"
apply auto apply(subst(asm)LC.simps)
apply auto
apply (simp_all add: Cons_eq_append_conv)+
using p10 p15 p12 p16 p17 by fastforce+
have p23: "¬([^c]⊢^c← ^b)"
apply auto apply(subst(asm)LC.simps)
apply auto
apply (simp_all add: Cons_eq_append_conv)+
by (simp add: p15)
have p19: "¬([^a,^a→ ^c]⊢^c← ^b)"
apply auto apply(subst(asm)LC.simps)
apply auto
apply (simp_all add: Cons_eq_append_conv)+
using p10 p23 p12 by auto+
have p25: "¬([^a]⊢^c← ^b)"
apply auto apply(subst(asm)LC.simps)
apply auto
apply (simp_all add: Cons_eq_append_conv)+
by (simp add: p16)
show p2: "¬([^a← ^b,^a→ ^c]⊢^c← ^b)"
apply auto apply(subst(asm)LC.simps)
apply auto
apply (simp_all add: Cons_eq_append_conv)+
using p10 p23 p4 p25 p9 by fastforce+
qed

Since each derivation path in the proof of Theorem 1 is too long to show, we
truncate it3. Thus, we only showed the code for Lemma 1. Next, we show the
proof of Theorem 2. Note that some lemmas are omitted from the following code
for the clarity. The predicate rCPS and rCPS' are triadic relations between the
answer a, the source x, and the result y.

3 We show the full proof on https://github.com/tani/esslli2022.
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theorem rCPS_transformation:
fixes a x :: "'a category"
shows "⋀y. rCPS' a x y ⟹ [x]⊢y"
and "⋀y. rCPS a x y ⟹ [x]⊢y"

proof (induct x)
case (Atomic x)
{case 1
show ?case using "1.prems"
rCPS'.cases identity by blast}
{case 2
have "⋀y. rCPS' a (^x) y ⟹ [^x]⊢y"
using "2.prems" rCPS'.cases identity
by blast
moreover
hence "⋀y. rCPS' a (^x) y ⟹ [^x]⊢(a←y)→a"
by (metis append_Cons append_Nil

cut type_raising_1)
moreover
hence "⋀y. rCPS' a (^x) y ⟹ [^x]⊢a←(y→a)"
by (metis category.distinct(1)

category.distinct(3)
rCPS'.cases type_raising_2)

ultimately
show "⋀y. rCPS a (^x) y ⟹ [^x]⊢y"
by (metis rCPS.cases)}

next
case (LeftFunctional x1 x2)
hence "⋀y1. rCPS a x1 y1 ⟹ [x1←x2]@[x2]⊢y1"
by (metis append.left_neutral

append_Cons cut
identity rev_right_intro_1)

hence "⋀y1. rCPS a x1 y1 ⟹ [x1←x2]⊢y1←x2"
using rev_right_intro_1 right_intro_2
by blast

hence "⋀y1. rCPS' a (x1←x2) (y1←x2) ⟹
[x1←x2]⊢y1←x2"

using rCPS'.cases by force
thus "⋀y. rCPS' a (x1←x2) y ⟹ [x1←x2]⊢y"
using rCPS'.cases by force
hence "⋀y. rCPS' a (x1←x2) y ⟹

[x1←x2]⊢(a←y)→a ∧ [x1←x2]⊢a←(y→a)"
by (metis append.left_neutral

append_Cons cut
type_raising_1
type_raising_2)

thus "⋀y. rCPS a (x1←x2) y ⟹ [x1←x2]⊢y"
by (metis rCPS.cases)
next
case (RightFunctional x1 x2)
hence "⋀y2. rCPS a x2 y2 ⟹ [x1]@[x1→x2]⊢y2"
by (metis (no_types, hide_lams)

append.left_neutral
append_Nil2 cut
rev_right_intro_1
type_raising_2)

hence "⋀y2. rCPS a x2 y2 ⟹ [x1→x2]⊢x1→y2"
using rev_right_intro_2 right_intro_1
by blast

hence "⋀y2. rCPS' a (x1→x2) (x1→y2) ⟹
[x1→x2]⊢x1→y2"

using rCPS'.cases by force
thus "⋀y. rCPS' a (x1→x2) y ⟹ [x1→x2]⊢y"
using rCPS'.cases by force
hence "⋀y. rCPS' a (x1→x2) y ⟹

[x1→x2]⊢(a←y)→a ∧ [x1→x2]⊢a←(y→a)"
by (metis append.left_neutral

append_Cons
cut type_raising_1
type_raising_2)

thus "⋀y. rCPS a (x1→x2) y ⟹ [x1→x2]⊢y"
by (metis rCPS.cases)
qed

5 Conclusion

In this paper, we investigated Barker’s and Plotkin’s CPS transformations on
Lambek calculus. Since the negative proofs by Lambek calculus were hard to
verify manually due to the huge search space, we analyzed graphs of the paths
of the proofs using Isabelle/HOL. We showed that Barker’s CPS transformation
was provable in Lambek calculus, whereas Plotkin’s CPS transformation was not
so. Finally, among the CPS transformations, we proposed a syntactic restriction
on CPS transformation which ensured provability in Lambek calculus. In future,
we tackle CPS transformation on Lambek calculus with substructural logic [7]
in relation to Plotkin’s CPS transformation.
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