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Abstract. Our goal is to use subjective logic (SL), a quantitative logic

with uncertainty, to model agents’ opinions and uncertainty, and their

changes over time, in social networks. In this paper, we discuss the desired

properties for an opinion update function in this setting. We show that

SL’s predefined belief update functions do not satisfy these properties,

and we define a new belief update function satisfying the desired proper-

ties. We show that a special case of opinions in SL with our new update

function corresponds to earlier (non-logical) work on social networks [1],

and that the inclusion of uncertainty strictly extends this earlier work.

1 Introduction

Recently, social networks have begun to influence every aspect of our lives,

with unprecedented, unanticipated consequences, especially in politics and pub-

lic opinion. Research on social networks has studied opinions and their change

over time, but to accurately model real people and their opinions and beliefs, we

must include information about uncertainty, or confidence, in formal models of

social networks.

To achieve this goal, we use subjective logic (SL), which includes information

about agents’ uncertainty, to develop a more nuanced model of social networks

and their changes over time. More precisely, the contributions of this paper are

the following:

– We identify four desiderata of properties for an update function with SL.

Those desiderata are our interpretation of rationality when updating opin-

ions.

– We propose an opinion update function using SL’s trust discount and belief

fusion. We show through examples that our update function, with cumula-

tive, averaging, and weighted belief fusions, does not satisfy our desiderata.

– We propose a new update function using an earlier (non-logical) work on

social networks. We show that the new update function strictly extends this

earlier work and satisfies our desiderata.
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2 Related work

Research about the dynamics of opinions in social networks using formal models

and logic-based approaches is fairly new, and much of it uses non-quantitative

(yes or no) opinions or beliefs, rather than qualitative opinions which can take

on a spectrum of values between 0 and 1. Ŝırbu et al. [9] investigate the effects

of algorithmic bias on polarization by counting the number of opinions clusters.

Gargiulo et al. [4] develop simulated social network and observe group formation

over time. Liu et al. [8] use ideas from doxastic and dynamic epistemic logics to

qualitatively model influence and belief changes in social networks. Christoff [3]

develops several non-quantitative logics for social networks, and Young Pedersen

[10] develops a non-quantitative logic concerned specifically with polarization.

Hunter [5] introduces a logic of belief updates over social networks with varying

levels of influence and trust. Using dynamic epistemic logic, Baltag et al. [2]

created a threshold model where agents’ behavior changes when the proportion

of supporters changes.

Alvim et al. [1] develop a formal model for social networks where agents have

quantitative opinions and quantitative influence on each other, with a function

for agents’ belief update over time. The goal of the current paper is to extend

this model by adding the possibility of uncertainty to the agents’ quantitative

opinions.

3 Background: Subjective Logic

This section describes all the elements of subjective logic that we use in our

model. Subjective Logic is a logic developed by Josang [6] that extends prob-

abilistic logic by adding uncertainty and subjectivity. In probabilistic logic, a

uniform distribution does not express “we don’t know”, because a uniform dis-

tribution says that we know that the distribution over the domain is uniform.

Subjective logic can express uncertainty by the lack of confidence about the dis-

tribution. The subjectivity comes from the fact that we can assign an opinion

about a proposition to an agent.

The main object of subjective logic is the opinion. We represent an opinion

by ωA
X , where A is an agent, X a random variable, and ωA

X is A’s opinion about

X. An opinion expresses support for none, one or many states of a domain. This

section presents the elementary definitions composing an opinion. A domain is a

state space consisting of a set of values called states, events, outcomes, hypothe-

ses or propositions. The values are assumed to be exclusive and exhaustive.

Belief mass is a distribution over a domain representing an agent’s confidence

in each value in the domain. The belief mass assigned to a value x ∈ X expresses

support for x being TRUE. Belief mass is sub-additive, i.e.
∑
x∈X

bX(x) ≤ 1. The

sub-additivity is complemented by uncertainty mass uX and it represents the

lack of support or evidence for the variable X having any specific value.
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Definition 1. (Belief Mass Distribution) Let X be a domain of size k ≥ 2,

and let X be a variable over that domain. A belief mass distribution denoted

bX : X → [0, 1] assigns belief mass to possible values of the variable X. Belief

mass and uncertainty mass sum to one, i.e., uX +
∑
x∈X

bX(x) = 1.

Opinions can be semantically different, depending on the situation they ap-

ply to. An aleatory opinion applies to a variable governed by a frequentist pro-

cess, and representing the likelihood of values of the variable in any unknown

past or future instance of the process. “The bias of a coin is p = 0.6” is an

aleatory opinion. An epistemic opinion applies to a variable that is assumed to

be non-frequentist, and that represents the likelihood of the variables in a spe-

cific unknown instance. “Beatriz killed Evandro” is an epistemic opinion. In an

epistemic opinion, opposite/different pieces of evidence should cancel each other

out. Therefore, it must be uncertainty-maximized.

Base rate distribution represents a prior probability distribution over a do-

main: the probability distribution before considering evidence about the domain.

Definition 2. (Opinion) Let X be a domain of size k ≥ 2, and X a random

variable in X. An opinion over the random variable X is the ordered triple ωX =

(bX , uX ,aX) where

– bX is a belief mass distribution over X,

– uX is the uncertainty mass which represents the vacuity of evidence,

– aX is a base rate distribution (a probability distribution) over X.

The projected probability distribution of an opinion is the posterior probabil-

ity distribution after updating the base rate distribution with the belief mass

distribution. The more an opinion depends on the belief mass, the less it de-

pends on the base rate. The projected probability distribution is defined by

PX(x) = bX(x) + aX(x)uX , ∀x ∈ X
The definition of opinion is useful for our model since it is more expressive

than the belief state of an agent about a proposition in [1], which is similarly an

opinion with domain X = {true, false}, with no uncertainty mass. The agent

must commit all of their mass to the values of the domain with no uncertainty.

Example 1. Let X = {x, x} be a domain where x is “global warming is happen-

ing” and x is “global warming is not happening”. Let X be a random variable

in X. An opinion about X must be epistemic, because it is about a fact in

the present instance that is true or false. Let the base rate be uniform. With

no evidence, an agent A will hold the opinion ωA
X = ((0, 0), 1, (0.5, 0.5)) with

PA
X(x) = 0.5, meaning that A is 50% sure that the global warming is happening,

but their opinion is relying only on the base rate, with no evidence supporting

either of the values.

After gathering evidence from newspapers, scientific studies and other people,

A assigns a belief mass to x. If agent A agrees with x by 80%, A holds the opinion
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ωA
X = ((0.6, 0), 0.4, (0.5, 0.5)) with PA

X(x) = 0.8, meaning that A is 80% sure that

global warming is happening, and has evidence that corresponds to 60% of their

mass. The uncertainty mass means that A is relying 40% on the base rate.

To model influence that one agent has over another, subjective logic has trust

opinion, an opinion that an agent has about another agent as a good source of

information.

Definition 3. (Trust opinion) Let TB = {tB , tB} be a trust domain, where tB
means “B is a good source of information” and tB means “B is not a good source

of information”. Then ωA
tB , or ωA

B for short, is the (trust) opinion that A has

about the trustworthiness of B as a source of information.

We use trust opinions to model an agent’s updated opinion after communi-

cation: ω
[A;B]
X is a new opinion generated by taking belief mass ωB

X proportional

to the belief mass of the trust opinion ωA
B . ω

[A;B]
X represents A’s opinion about

X after communicating with B, ωA
B represents A’s opinion about B’s trust-

worthiness, and ωB
X represents B’s opinion about X. The operation is denoted

ω
[A;B]
X = ωA

B ⊗ ωB
X .

Example 2. Let ωA
B = ((1, 0), 0,aAB) with PA

B(tB) = 1 and ωB
X = ((0.6, 0), 0.4,

(0.5, 0.5)) with PB
X(x) = 0.8. Here, A completely trusts B and B is 80% sure

that x is true with 60% of their mass assigned to x.

PA
B(tB) = 1, i.e. A completely trusts B. Then, A by trusting B (in short

[A;B]) will hold the same opinion as B about X. Therefore, ω
[A;B]
X = ωB

X . By

the opinion that A has about X by trusting B, A is 60% sure that x is true with

80% of their mass assigned to x.

Example 3. Let ωA
B = ((0.5, 0.5), 0,aAB) withPA

B(tB) = 0.5 and ωB
X = ((0.8, 0), 0.2,

(0.5, 0.5)) with PA
X(x) = 0.9. Here, A trusts B by 50% and B is 80% sure that

x is true with 60% of their mass assigned to x.

PA
B(tB) = 0.5. Then, [A;B] will hold 50% of the belief mass of each value

from B. Therefore, ω
[A;B]
X = ((0.4, 0), 0.6, (0.5, 0.5)) with P

[A;B]
X (x) = 0.7. By the

opinion that A has about X by trusting B, A is 70% sure that x is true with

40% of their mass assigned to x.

To model A’s concurrent interactions with multiple other agents, we can use

belief fusion [6, 7]. Belief fusion combines a set of opinions into a single opinion

which then represents the opinion of the collection of sources. There is more

than one possible definition for the belief fusion operator. They differ by their

properties and applications. For our model, we consider the following operators

from [6,7]:

– Cumulative belief fusion (ω
(A⋄B)
X = ωA

X ⊕ ωB
X): It is used when it is assumed

that the amount of independent evidence increases by including more and
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more sources. The idea is to sum the amount of evidence of the opinions.

It is non-idempotent. E.g. a set of agents flips a coin a number of times

and produce an opinion about the bias of the coin. An opinion produced by

cumulative belief fusion represents all the experiments made by the agents.

– Averaging belief fusion (ω
(A⋄B)
X = ωA

X⊕ωB
X): It is used when including more

sources does not mean that more evidence is supporting the conclusion. The

idea is to take the average of the amount of evidence of the opinions. It is

idempotent, but it has no neutral element. E.g. After observing the court

proceedings, each member of a jury produces an opinion about the same

evidence. The verdict is the fusion between those opinions.

– Weighted belief fusion (ω
(A⋄̂B)
X = ωA

X⊕̂ωB
X): It is used when we take the

average of the amount of evidence of the opinions weighted by their lack

of uncertainty. In particular, opinions with no belief mass are rejected. It is

idempotent and it has a neutral element uX = 1. E.g. a group of medical

doctors needs to decide on a diagnosis. Each of them has an opinion, but

some of them are more certain (assigned more belief mass) than others.

Those opinions must have more weight than the others upon fusion.

4 Update function for two agents

Our goal is to model agents’ opinions in social networks and to develop an update

function for opinions after agents interact. This section describes our proposal

for an update function for two agents with belief fusion and trust opinions.

Definition 4. (Desiderata for the properties of an update function) Let X =

{x, x} be a domain, X a random variable in X, and A and B agents holding

opinions ω
A[t]
X and ω

B[t]
X at time t. Let ωA

B be a trust opinion. We need an update

function ω
A[t+1]
X = f(ω

A[t]
X , ωA

B , ω
B[t]
X ) satisfying the following properties:

1. Weak convergence: P
A[t]
X ≤ P

A[t+1]
X ≤ P

B[t]
X or P

A[t]
X ≥ P

A[t+1]
X ≥ P

B[t]
X . A

cannot move further from B upon update.

2. Markovian behaviour: ω
A[t+1]
X must not depend on the opinions from time

less than t. Each step of the update must be independent.

3. Idempotence: If ω
A[t]
X = ω

B[t]
X , then ω

A[t]
X = ω

A[t+1]
X . No matter the trust, if

A and B have the same opinion, A must not change their opinion.

4. Non-increasing uncertainty: we have two versions of this desideratum.
(a) Non-increasing group uncertainty: The sum of the uncertainty of all

agents must not increase over time.

(b) Non-increasing individual uncertainty: Each agent’s individual uncer-

tainty never increases.

These desiderata are our interpretation of rationality when updating opin-

ions. The weak convergence property says that when an agent receives new infor-

mation, the belief is updated to a new value closer to the new information they
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receive, and they do not become more extreme. The Markovian behavior prop-

erty says that our current belief contains all relevant information, so past beliefs

are not taken into account to compute a new one. The idempotence property

says that, if the new information an agent receives is identical to their current

belief, then the belief remains unchanged. The non-increasing uncertainty prop-

erty says that at least some agents do not become totally uncertain as they

receive new information and communicate. We aim for one of the two versions

of this property because we hope to avoid the situation where all agents become

totally uncertain in the limit.

The intuition behind our planned update function is to fuse agent A’s cur-

rent opinion with all the opinions that A can gather by trusting other agents.

Define a dogmatic opinion as an opinion with no uncertainty, i.e. uX = 0. For

this update function, we are not considering situations with dogmatic opinions,

because it means the agent has an infinite amount of evidence and the belief

fusion operators remove non-dogmatic opinions when at least one is present.

Next, we investigate whether subjective logic’s predefined update functions

satisfy our desired properties.

Definition 5. (Update function for 2 agents with Belief Fusion and Trust) Let

ω
A[t]
X and ω

B[t]
X be non-dogmatic opinions. Let ⊕ be a belief fusion operator.

Define the update function for ω
A[t+1]
X as ω

A[t+1]
X = ω

A[t]
X ⊕ (ωA

B ⊗ ω
B[t]
X ).

We call (ωA
B ⊗ ω

B[t]
X ) the opinion that A will learn by interacting with B.

ω
A[t+1]
X is the opinion that A holds after merging their previous opinion (ω

A[t]
X )

with the opinion that A learned (ωA
B ⊗ ω

B[t]
X ).

By definition, the update function for ω
A[t+1]
X is Markovian. Note that, if ⊕

is the averaging or weighted belief fusion operator, and ω
A[t]
X = ωA

B ⊗ω
B[t]
X , then

ω
A[t]
X = ω

A[t+1]
X . This is different from our desired idempotence property, which

does not depend on trust opinion.

Example 4. For brevity, we write the value of PA
B(tB) where it should be ωA

B .

ω
A[t+1]
X = ((0, 0), 1, (0.5, 0.5))⊕ (0.5⊗ ((0.8, 0), 0.2, (0.5, 0.5)))

= ((0, 0), 1, (0.5, 0.5))⊕ ((0.4, 0), 0.6, (0.5, 0.5))
(1)

where ω
A[t]
X = ((0, 0), 1, (0.5, 0.5)), P

A[t]
X (x) = 0.5

ωA
B = ((0.5, 0.5), 0,aAB), PA

B(tB) = 0.5

ω
B[t]
X = ((0.8, 0), 0.2, (0.5, 0.5))) P

A[t]
X (x) = 0.9

(2)

Here, agent A has an opinion with only uncertainty mass; they are 50% sure

that x is true, and trusts B by 50%. Because the trust opinion has no uncertainty

mass, the base rate is not relevant. Agent B is 90% sure that x is true with 80%

of their mass to x. The final result depends on the choice of belief fusion operator.
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Example 5. Now consider these two agents updating their opinion over time.

ω
A[0]
X = ((0.2, 0), 0.8, (0.5, 0.5)) P

A[0]
X (x) = 0.6 PA

B(tB) = 0.5

ω
B[0]
X = ((0.8, 0), 0.2, (0.5, 0.5)) P

B[0]
X (x) = 0.9 PB

A(tA) = 0.5
(3)

Here, agent A is 60% sure about x and B is 90% about x. Both trust each

other by 50%. The evolution of PA
X(x) and PB

X(x) is shown in Fig. 1.

Fig. 1. PA
X(x) (blue) and PB

X(x) (orange) updated 20 times as in Example 5.

We expected that the update function would satisfy the weak convergence

property by PA
X(x) and PB

X(x) converging to some value between P
A[0]
X (x) = 0.6

and P
B[0]
X (x) = 0.9. But because evidence keeps accumulating over time, with

cumulative belief fusion, PA
X(x) and PB

X(x) converge to 1.

For averaging and weighted belief fusion, PA
X(x) and PB

X(x) converge to 0.5,

violating weak convergence. With epistemic opinions, increasing uncertainty over

time is expected, but the same happens with aleatory opinions.

Example 6. In this case, agent A trusts B by 0.5, but B does not trust A.

ω
A[0]
X = ((0.2, 0), 0.8, (0.5, 0.5)) P

A[0]
X (x) = 0.6 PA

B(tB) = 0.5

ω
B[0]
X = ((0.8, 0), 0.2, (0.5, 0.5)) P

B[0]
X (x) = 0.9 PB

A(tA) = 0
(4)

Here, agent A is 60% and B 90% sure about x. A trusts B by 50%, but B

does not trust A. The evolution of PA
X(x) and PB

X(x) is shown in Fig. 2.

For cumulative belief fusion, B does not change their opinion because ωA
B ⊗

ω
B[t]
X has no belief mass, therefore, B cannot learn anything. However A keeps

learning from B over time, and PA
X(x) converges to 1.

The weighted belief fusion case shows how the idempotency works for its

operator and how it is different from the idempotence property that we are

aiming for. When ωA
X = ((0.4, 0), 0.6, (0.5, 0.5)) with PA

X(x) = 0.7, ωA
X = ωA

B ⊗
ωB
X . Therefore, PA

X(x) converges to 0.7.

Example 7. In this case, A and B have the same opinion and the same trust.

ω
A[0]
X = ((0.6, 0), 0.4, (0.5, 0.5)) P

A[0]
X (x) = 0.8 PA

B(tB) = 0.5

ω
B[0]
X = ((0.6, 0), 0.4, (0.5, 0.5)) P

B[0]
X (x) = 0.8 PB

A(tA) = 0.5
(5)
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Fig. 2. PA
X(x) (blue) and PB

X(x) (orange) updated 20 times as in Example 6.

Here, A and B have the same opinion. They are 80% sure about x. Both

trust each other by 50%. The evolution of PA
X(x) and PB

X(x) is shown in Fig. 3.

Fig. 3. PA
X(x) and PB

X(x) (both orange) updated 20 times as in Example 7.

Even starting with the same opinion, agents A and B do not keep the same

opinion over time. With cumulative belief fusion, A and B keep accumulating

evidence and PA
X(x) and PB

X(x) converge to 1. With averaging or weighted belief

fusion, uncertainty keeps increasing, and PA
X(x) and PB

X(x) converge to 0.5.

To sum up, these examples show that an update function with trust discount

and belief fusion does not satisfies our desiderata. In the next section, we propose

a update function using an earlier work on social networks that satisfies our

desiderata.

5 Alternative update function

In the previous section, we showed through some examples that our update

function defined in Def. 5 does not satisfy the desired properties. This section

shows an alternative update function with elements from [1].

One of our goals is to represent belief about multiple issues. We can update

each state of the belief mass distribution using a definition similar to the classical
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belief update function from [1]. Let A = {A1, · · · , An} be a set of n agents. Let

p be a proposition. Let Beltp : A → [0, 1] be the belief state of an agent at the

time t. Let In : A ×A → [0, 1] be the influence graph s.t. In(Ai, Aj) represents

the influence of agent Ai on Aj , and In(Ai, Aj) = 1 if i = j.

Definition 6. (Update function from [1]) The belief of agent Ai given the in-

teraction with all other agents in A at time t is defined as

Belt+1
p (Ai) =

1

n

∑
Aj∈A

(
Beltp(Ai) + In(Aj,Ai)

(
Beltp(Aj)− Beltp(Ai)

))
(6)

In particular, the update function for two agents A and B is defined as

Belt+1
p (A) =

Beltp(A)

2
+

Beltp(A) + In(B,A)(Beltp(B)− Beltp(A)

2
(7)

The idea behind this update function is to move the belief state of A to the

belief state of B proportionally by the influence that B has on A. So, the new

belief state is the average between the belief state that A has with the belief that

A has when influenced by B. We define a new update function with subjective

logic’s opinion and the Def. 6

Definition 7. (Update Function for 2 agents with Constant Group Uncertainty)

Let X be a domain of size k ≥ 2, X a random variable in X, A and B agents

holding opinions ω
A[t]
X and ω

B[t]
X at time t, and ωA

B a trust opinion. Define the

update function for ω
A[t+1]
X as

ω
A[t+1]
X =


b
A[t+1]
X =

b
A[t]
X

2
+

b
A[t]
X +PA

B(tB)(b
B[t]
X − b

A[t]
X )

2

u
A[t+1]
X =

u
A[t]
X

2
+

u
A[t]
X +PA

B(tA)(u
B[t]
X − u

A[t]
X )

2
a
A[t+1]
X = a

A[t]
X

(8)

Example 8. Let X = {x1, x2, x3} be the domain. Agents A and B have the

following opinions and trust opinions:

ω
A[0]
X = ((0, 0.4, 0.6), 0,a

A[0]
X ) PA

B(tB) = 0.5

ω
B[0]
X = ((0.4, 0.4, 0.2), 0,a

B[0]
X ) PB

A(tA) = 0.5
(9)

After one step, A and B have the following opinions:

ω
A[0]
X = ((0.1, 0.4, 0.5), 0,a

A[0]
X )

ω
B[0]
X = ((0.3, 0.4, 0.3), 0,a

B[0]
X )

(10)

Note that, for x1 and x3, the belief masses does not move further from each

agent upon update. Also, b
A[0]
X (x2) = b

B[0]
X (x2) = b

A[1]
X (x2) = b

A[1]
X (x2) = 0.4.

Because A and B have dogmatic opinions, bX = PX .
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Theorem 1. If X is a domain of size k = 2, and ω
A[0]
t and ω

A[0]
t are dogmatic

opinions, then the update function for 2 agents with constant group uncertainty

from Def. 7 corresponds to the Def. 6 for 2 agents.

Proof. Since ω
A[0]
X (and ω

B[0]
X ) is a dogmatic opinion, ω

A[1]
X is defined as

ω
A[1]
X =


b
A[1]
X =

b
A[0]
X

2
+

b
A[0]
X +PA

B(tB)(b
B[0]
X − b

A[0]
X )

2
u
A[1]
X = 0

a
A[1]
X = a

A[0]
X

(11)

Also, b
A[t]
X = P

A[t]
X for any t.

We want to map the P
A[1]
X (x) to Belt+1

p (A), because we consider that A’s

take decisions using P
A[1]
X in subjective logic and Belt+1

p (A) in [1].

If x = p, the belief mass b
A[0]
X corresponds to the belief state Bel0p(A), the

belief mass b
B[0]
X corresponds to the belief state Bel0p(B), and the posterior prob-

ability PA
B(tB) from the trust opinion ωA

B corresponds to the influence In(B,A),

then b
A[t]
X (x) and Belt+1

p (A) have the same definition and P
A[1]
X = Belt+1

p (A).

It is easy to extend the update function to arbitrarily many agents, using

the same Def. 6. It is possible to extend the update function for domains of size

k > 2, but with no clear correspondence for belief state.

Theorem 2. If X is a domain of size k = 2, the update function from Def. 7 sat-

isfies the desiderata from Def. 4: 1. weak convergence, 2. Markovian behaviour,

3. idempotence, and 4.(a) non-increasing group uncertainty.

Proof. 1. weak convergence: Suppose that b
A[t]
X (x) ≤ b

B[t]
X (x), then

b
A[t+1]
X (x) = b

A[t]
X (x) +

(
PA

B(tB)(b
B[t]
X (x)− b

B[t]
X (x))

2

)
. (12)

Since b
A[t]
X (x) ≤ b

B[t]
X (x) and PA

B(tB) ≥ 0, b
A[t]
X (x) ≤ b

A[t+1]
X (x). Now,

b
A[t+1]
X (x) = b

B[t]
X (x)−

(
b
B[t]
X (x)− b

A[t]
X −

PA
B(tB)(b

B[t]
X (x)− b

B[t]
X (x))

2

)
.

(13)

Since b
A[t]
X (x) ≤ b

B[t]
X (x) and PA

B(tB) ≤ 1, b
A[t+1]
X (x) ≤ b

B[t]
X (x). Therefore,

b
A[t]
X (x) ≤ b

A[t+1]
X (x) ≤ b

B[t]
X (x). With a similar proof, we can show that

u
A[t]
X ≤ u

A[t+1]
X ≤ u

B[t]
X .

Now, we need to show that P
A[t]
X (x) ≤ P

A[t+1]
X (x) ≤ P

B[t]
X (x). By definition

of projected probability,

b
A[t]
X (x)+u

A[t]
X a

A[t]
X (x) ≤ b

A[t+1]
X (x)+u

A[t+1]
X a

A[t]
X (x) ≤ b

B[t]
X (x)+u

B[t]
X a

B[t]
X (x).

(14)
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Since b
A[t]
X (x) ≤ b

A[t+1]
X (x) ≤ b

B[t]
X (x) and u

A[t]
X ≤ u

A[t+1]
X ≤ u

B[t]
X ,

P
A[t]
X (x) ≤ P

A[t+1]
X (x) ≤ P

B[t]
X (x). (15)

The proof for P
A[t]
X (x) ≥ P

A[t+1]
X (x) ≥ P

B[t]
X (x) is similar.

2. Markovian behavior: The definition does not uses opinions from time before

t. We also consider the agents does not have a history of acquired evidence

over time.
3. idempotence: Suppose that ω

A[t]
X = ω

B[t]
X , then

b
A[t+1]
X (x) =

b
A[t]
X (x) + b

A[t]
X (x) +PA

B(b
A[t]
X (x) + b

A[t]
X (x))

2

=
b
A[t]
X (x) + b

A[t]
X (x)

2
= b

A[t]
X (x)

(16)

4.(a) non-increasing group uncertainty i.e. u
A[t]
X + u

B[t]
X = u

A[t+1]
X + u

B[t+1]
X .

u
A[t]
X + u

B[t]
X = u

A[t+1]
X + u

B[t+1]
X

=
u
A[t]
X

2
+

u
A[t]
X +PA

B(tA)(u
B[t]
X − u

A[t]
X )

2

+
u
B[t]
X

2
+

u
B[t]
X +PB

A(tB)(u
A[t]
X − u

B[t]
X )

2
= u

A[t]
X + u

B[t]
X

(17)

To sum up, in this section we first presented the belief update function

from [1]. Then we proposed a subjective logic belief update function, and in

Theorem 1 we showed that our SL belief update function corresponds to the

belief update function from [1]. Next in Theorem 2 we proved that our new

belief update function satisfies the four desiderata from Def. 4. This provides

us with several valuable pieces of information: first, it is possible to define at

least one belief update function in SL satisfying the four desiderata. Second, we

can define a belief update function in SL that meaningfully corresponds to the

belief update function from [1], even though SL is in fact more expressive than

the formalism used in [1], which does not provide for uncertainty. This shows

that SL is promising for modelling social networks, since it can already capture

the information used in [1], and also is equipped with an additional method for

reasoning about agents’ uncertainty.

6 Conclusions and Future Work

In this paper, we have used subjective logic (SL) to consistently extend the

dynamic models from [1] with uncertainty, allowing a more nuanced and realistic

model of complex opinions in social networks.

We identified four desiderata of properties that describe our interpretation

of rationality when updating opinions. From SL, we selected the trust discount
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and belief fusion operators to define our update function. We showed through

examples that our function does not satisfy the desiderata. Our next step for

this part of our work will be to analyse to what situations in social networks

our function applies. We conjecture that an update function using cumulative

belief fusion might model a situation in which agents that are exposed to the

same opinion many times will develop more confidence in their opinion than the

source of the information itself.

One of our goals is to represent belief about multiple issues. We defined a new

update function using SL that is similar to a definition of classical belief update

function from [1] that already satisfies our desiderata. We showed that the new

update function satisfies our desiderata, showing that it is possible to define

at least one belief update function in SL. We also showed that our SL belief

update function corresponds to the belief update function from [1]. This shows

that SL is promising for modelling social networks, since it can already capture

the information used in [1], and also is equipped with an additional method

for reasoning about agents’ uncertainty. Since SL is more expressive than the

formalism used in [1], the next step for this function is to extend the model

using SL operators and what these operations mean from the classic formalism

perspective.
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