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Abstract

We present a class of diagrams in which to reason about causation.
These diagrams are based on a formal semantics called ‘system semantics’,
in which states of systems are related according to temporal succession.
Arguing from straightforward examples, we provide the truth conditions
for causal claims that one may make about these diagrams.

1 Introduction

Diagrams offer a natural and highly expressive means of depicting causal
relations. Flowcharts are the ubiquitous example, but even more concerted
work to analyse causal relations specifically employs an abundance of visual
aids. Lewis (1973, 564), for instance, diagrammatically depicts similarity or-
derings over worlds, while Spirtes et al. (2000) and Pearl (2009) represent
Bayes nets as directed acyclic graphs.

In this paper we follow the diagrammatic tradition by presenting a class of
diagrams in which to reason about causation. The bulk of the work consists in
presenting a variety of cases in which diagrams represent causal relations. Re-
garding the underlying formal apparatus, we construct these diagrams from
a semantics called ‘system semantics’. In Section 2 we outline the approach
of system semantics and see how it may be used to characterise causal re-
lations. Section 3 provides an alternative, diagrammatic characterisation of
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these causal relations, and Section 4 refines the account by depicting two no-
tions of ‘sometimes’ and ‘partial’ causation. In Section 5 we consider some
further expressive power of diagrams in system semantics, showing how they
may represent an agent’s interaction with a system, and in Section 6 we con-
clude by outlining avenues for future work.

2 System Semantics for Causal Claims

To begin by analogy, system semantics aims to do for causal claims what
Kripke semantics has achieved in the philosophical discussion of possible and
necessary truth. Indeed, we modify Kripke semantics for modal logic to create
diagrams called ‘systems’ that specify precisely how parts of possible worlds
change through time. A system S is a pair 〈St, R〉 composed of a set St
of states and a relation R of temporal succession between them. Each state
represents a moment type rather than token, and is formally a valuation of
atomic sentences in propositional logic. Given states s and t, the intuitive
reading of “s is related to t” is that, if s is the current state, t may be the next
state after one step in time.

To illustrate, suppose we have two atomic sentences representing a switch
being up (S), and a light being illuminated (L). Figure 1 represents the inter-
action between the switch and light. Circles depict states, accompanied by the
sentences that are true at them, and arrows depict the succession relation. The
diagram of Figure 1 shows, for instance, that when the switch is up and light
is off (S,¬L) the system changes into the state where the switch is up and the
light is on (S, L). And the top-left loop demonstrates that if the switch is down
and light is off (¬S,¬L), then they remain so in the next state.

¬S,¬L ¬S, L

S,¬L S, L

Figure 1: System composed of a switch and light.

Looking at Figure 1, it seems the following causal claim should come out true.

The switch being up is a necessary and sufficient cause of the light being on.

The truth conditions that we propose here for such a causal claim draw on
the notion of a state’s past and future states. These are encoded by a system’s
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relation of temporal succession R as the states leading to and from each state
along R. We say that the switch being up is a necessary cause of the light
being on because, in every state where the light is on, we see the switch was
up in the past. And the switch being up is a sufficient cause of the light being
on because every state where the switch is up leads only to states where the
light is on.

In general, of course, we also have to require that the above claims are
not trivially satisfied, as would happen, say, if the system featured only states
where the switch is up and the light is on. Triviality would result as well if the
light never changed, in the sense that states where the light is off lead only to
states where the light is off, and states where the light is on lead only to states
where the light is on. In a slogan, then, we must additionally require that the
switch being up makes some difference to the light being on.

We can deal with these worries of triviality by providing the minimal con-
ditions that a causal relation must satisfy. Let us say that a state s leads to a
state t—and conversely, t comes from s—just in case there is some path along
R from s to t. We then define the following notion of ‘minimal causation’.

Definition 1 (Minimal cause). A is a minimal cause of B just in case

(1a) Some B-state comes from or leads to some ¬B-state,
(1b) Some A-state leads to some B state, and
(1c) Some ¬A-state leads to some ¬B-state.

With Definition 1 providing the minimal conditions that a causal relation
must satisfy, from the point of view of system semantics, we strengthen the
conditions to define the notions of necessary and sufficient causation. To do
so, let us say that state s must lead to state t just in case t eventually occurs
from s, no matter what path the system takes from s. Likewise, t must come
from s just in case s always occurred prior to t, no matter what path the system
took to t.

We then strengthen the notion of minimal causation like so.

Definition 2 (Necessary cause). A is a necessary cause of B just in case

(2a) A is a minimal cause of B, and
(2b) every B-state must come from some A-state.

Definition 3 (Sufficient cause). A is a sufficient cause of B just in case

(3a) A is a minimal cause of B, and
(3b) every A-state must lead to some B-state.
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Condition (2b) expresses that whenever B currently holds, A must have
held at some point in the past, no matter what path the system took to the
current state. Condition (3b) expresses that whenever A currently holds, B
will hold at some point in the future, no matter what path from the current
state the system will take. The reader is invited to check that, according to
Definitions 2 and 3, in the system of Figure 1, S is indeed a necessary and
sufficient cause of L.

It turns out that Definitions (1)–(3) above can be displayed in a purely
diagrammatic way, as the next section demonstrates.

3 A Diagrammatic Definition

Given a system S , we diagrammatically represent condition (1a) by saying
that the system in question must feature some path depicted in Figure 2. For
example, a system S features the topmost arrow from Figure 2 just in case
some state of S where both A and B are false leads to a state where A is false
and B true. (For convenience we suppress ‘¬A’ and ‘¬B’ in Figures 2 and 3.)

◦

A

B

A, B

Figure 2: Some B-state leads to some ¬B-state, or vice versa.

We likewise represent conditions (1b) and (1c) by means of the unshaded
diagrams appearing in Figure 3. That is, some A-state leads to some B-state
in a system S—i.e. (1b) holds—just in case S features some path from the
bottom-right diagram of Figure 3. And some ¬A-state leads to some ¬B-
state—i.e. (1c) holds—just in case S features some path from the top-left
diagram of Figure 3.

The shaded diagrams of Figure 3 correspond to the definitions of necessary
and sufficient causation, where this time we read its arrows in terms of the
‘must’ mode of coming and leading. That is, a system S satisfies condition (2b)
just in case S features no path from the bottom-left diagram, while condition
(3b) holds in a system S just in case S features no path from the top-right
diagram.
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◦

A

B

A, B

◦

A

B

A, B

◦

A

B

A, B

◦

A

B

A, B

Figure 3: Diagrams depicting paths from states to states.

The definition of minimal causation given above is too weak on its own to
serve as a definition of any intuitive notion of cause. For, conditions (1a)–(1c)
only demand some paths of some specified kind, and so are even satisfied in
systems in which states succeed one another in a completely random fashion;
that is, in which every state leads to all states. In contrast, the definitions of
necessary and sufficient causation are each more stringent by demanding that
some paths are excluded from the system.

But one might also wonder whether they are too strong to adequately cap-
ture our causal talk. There seem to be many shades of causation falling short
of conditions (2b) and (3b) that our diagrams should hope to represent. In the
next section we consider two less demanding ways that a causal relation—
such as minimal, necessary and sufficient causation—may hold in a system.
These weaker modes of causation we call ‘sometimes’ and ‘partial’ causation.

4 Sometimes and Partial Causation

The purpose of introducing a ‘sometimes’ modifier into causal relations is to
capture causal reasoning in non-deterministic systems. Now, many analyses
of causation assume that the phenomena they wish to model behave deter-
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ministically. We will not pursue the matter here, but only point out that two
of the most popular analyses of causation assume some form of determinism.
Firstly, Lewis’s counterfactual analysis presumes a notion of determinism in
order to account for the asymmetry of causal dependence (see Menzies, 2017,
§2.2). Secondly, as Cartwright (1999) notes, the Bayes nets approach of Pearl
(2009) and Spirtes et al. (2000) assumes determinism in order to satisfy one of
their key assumptions, known as the Causal Markov Condition.

There are, nonetheless, many everyday processes we wish to model in
which causes do not uniquely determine their effects. Consider, for instance,
a computer with a faulty ‘on’ button, where pushing the button only some-
times succeeds in turning the computer on. (Or, more extremely, imagine the
button’s success depends on some quantum set up.) This on its own is a per-
fectly intelligible scenario, but analyses of causation that assume determinism
can only model it by introducing extraneous variables; say, by introducing a
hidden variable representing the button successfully connecting with the com-
puter. System semantics avoid such complication by allowing states to have
multiple successors. Thus, in system semantics we can straightforwardly de-
pict this scenario by means of the diagram of Figure 4. We assume that the act
of pushing the button lasts only one moment; that is, if the button is pushed
at a state, then it reverts to being unpushed in the next state.

button not pushed, off

button pushed, off

button not pushed, on

button pushed, on

∗

Figure 4: Pushing the button sometimes causes the computer to turn on.

The non-deterministic behaviour of the button corresponds to the fact that
there are two arrows coming from the state where the button is pushed and
the computer is off. If the system is in that state (pushed, off), then sometimes—
i.e. when the button did not work and the system moved along the arrow
marked with a star—the computer is still off in the next state. But at other
times, when the button happens to work, in the next state the computer is on.

In some cases we wish to explicitly add extra variables into our models.
This occurs, say, when we want to make a background assumption explicit,
or reveal the influence of a previously hidden variable. Thus, for instance,
one can take into account the presence or absence of charge in the computer
of Figure 4: when there is charge (C), the system behaves as in Figure 4, but
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when there is no charge (¬C) the system always moves into a state where the
computer is off. Figure 5 illustrates this new system.

¬C,¬P,¬O

¬C, P,¬O

¬C,¬P, O

¬C, P, O

C,¬P,¬O

C, P,¬O

C,¬P,¬O

C, P, O

Figure 5: When there is charge (C), pushing the button (P) sometimes causes
the computer to turn on (O).

Upon examination of Figures 4 and 5, it seems reasonable to assert the
following causal claims.

(4a) In the system of Figure 4, pushing the button is sometimes a sufficient
cause of the computer turning on.

(4b) In the system of Figure 5, when there is charge, pushing the button is
sometimes a sufficient cause of the computer turning on.

In Figure 4 we see that the path responsible for introducing the qualification
‘sometimes’ into (4a) is the path marked with a star. It is because of this
arrow that not every path from a pushed state leads to the computer being
on, meaning the system of Figure 4 does not satisfy condition (3b). Hence,
according to Definition 3, pushing the button is not a sufficient cause of the
computer being on. Nonetheless, were we to restrict attention to just those
times when pushing the button is successful—by removing the contravening
arrow from the diagram—then pushing the button would be a sufficient cause
of the computer turning on. This suggests the following truth condition for
adding a ‘sometimes’ modifier to a given causal relation, defined by means of
operations on diagrams.

Definition 4 (Sometimes relation). A causal relation holds sometimes, in a system
S , just in case it holds by removing some (possibly no) arrows from S .

The system of Figure 4 makes (4a) true since, in the system that results
from removing the arrow marked with a star, pushing the button is a sufficient
cause of the computer turning on.

Turning now to Figure 5, it seems we want to say that pushing the button
sometimes causes the computer to turn on, but only when there is charge.
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We can give the truth conditions for such conditional assertions by taking up
an idea of Kratzer (1991), whereby conditionals are restrictions on quantifiers.
In the present context, the proposal amounts to saying that a statement of
the form ‘If A then B’ is true just in case B is true with respect to the A-
states. Such a notion of conditional causal claims we call a notion of ‘partial’
causation, because for the causal claim to hold it need only hold in part of the
model.

Definition 5 (Partial relation). A causal relation holds partially, in a system S , just
in case it holds by removing some (possibly no) states from S .

Note that the definitions of sometimes and partial causation above imply
that every partial relation is also a sometimes relation. For we can mimic
the result of removing states from a system by removing every arrow that
touches a state we wish to remove. But we cannot go the other way: there are
sometimes relations that are not partial relations, as happens whenever we
have to remove some but not all arrows touching a given state. This occurs,
for instance, in the system of Figure 4 because removing any state where the
computer is off—which is enough to remove the arrow marked with a star—
would also make the system falsify condition (1c) and fail even the test for
minimal causation.

A further advantage of depicting causal relations in terms of system se-
mantics is that one may naturally consider multiple relations holding in the
same diagram. The following section briefly outlines how such a proposal can
be used to model an agent’s interaction with a system.

5 Modelling an Agent’s Interaction

By focusing on changes of states individually, rather than the global behaviour
of variables, system semantics provides a novel level of detail absent from
other approaches, notably the structural causal models of Halpern (2000) and
Pearl (2009, §7.1). One advantage of the finer grain of system semantics is
the abundance of ways to represent relations between states. For example, as
some have demanded of automata (e.g. Baeten et al., 2011), we may naturally
add succession relations to represent different kinds of change—such as those
brought about by a user interacting with a system and those brought about
by the system itself.

Figures 6a and 6b depict two different ways to add an interaction relation
to the system depicted in Figure 1. The dark lines indicate changes made by
the system independently (nature’s path, so to speak), while the dashed lines
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depict a user’s path, interacting with the system. In Figure 6a turning off
the switch immediately turns off the light, whereas Figure 6b the user takes a
turn, only after which the system reacts.

¬S,¬L ¬S, L

S,¬L S, L

(a) Interaction with immediate effect

¬S,¬L ¬S, L

S,¬L S, L

(b) Interaction with delayed effect

Figure 6: Two ways to add interaction to a system.

Extrapolating from this simple scenario, we may model multi-agent games
by introducing one relation for each agent over states of a gameplay.

6 Conclusion

In this paper we saw some simple diagrams depict the modelling power of
system semantics. Of course, one must invest quite some work just to provide
a system-semantic representation of any given process, prior to analysing its
causal relations. In this brief exposition we have made no argument for the
capacity of the diagrams of system semantics to represent every kind of pro-
cess we would wish to model. But given the widespread use of causal notions
in diverse fields, such an argument would be required if system semantics for
causal claims is to properly fulfil its representational ambition.

We further saw how, by encoding temporal succession into the models
directly, we could analyse causal notions in a fairly straightforward manner.
Of course, we have not touched upon the metaphysical issues underlying
such an approach; for instance, we took the notion of temporal succession
to be unproblematic. A more comprehensive appraisal of system semantics
must examine whether the choices of primitives made by system semantics
fare better than those of other approaches to causality, such as the assumption
of a similarity ordering over worlds made by Lewis (1973). One benefit of
system semantics is that its metaphysical commitment—chiefly, an ontology
of states related in time—is reasonably transparent, though to fully make the
case for the philosophical adequacy of system semantics, one must still argue
that those are sensible commitments to make.

9



References

Jos CM Baeten, Bas Luttik, and Paul van Tilburg. Computations and interac-
tion. ICDCIT, 6536:35–54, 2011. doi:10.1007/978-3-642-19056-8_3.

Nancy Cartwright. Causal diversity and the markov condition. Synthese, 121

(1):3–27, 1999. doi:10.1023/A:1005225629681.

Joseph Y Halpern. Axiomatizing causal reasoning. Journal of Artificial Intelli-
gence Research, 12:317–337, 2000.

Angelika Kratzer. Conditionals. In Arnim von Stechow and Dieter Wunder-
lich, editors, Semantics: An international handbook of contemporary research,
pages 639–650. Berlin:de Gruyter, 1991.

David Lewis. Causation. Journal of Philosophy, 70(17):556–567, 1973.
doi:10.2307/2025310.

Peter Menzies. Counterfactual theories of causation. In Edward N. Zalta, edi-
tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stan-
ford University, winter 2017 edition, 2017. URL https://plato.stanford.
edu/archives/win2017/entries/causation-counterfactual/.

Judea Pearl. Causality: Models, Reasoning and Inference. Cambridge University
Press, New York, NY, USA, 2nd edition, 2009.

Peter Spirtes, Clark N Glymour, and Richard Scheines. Causation, prediction,
and search. MIT press, 2000.

10

http://dx.doi.org/10.1007/978-3-642-19056-8_3
http://dx.doi.org/10.1023/A:1005225629681
http://dx.doi.org/10.2307/2025310
https://plato.stanford.edu/archives/win2017/entries/causation-counterfactual/
https://plato.stanford.edu/archives/win2017/entries/causation-counterfactual/

	Introduction
	System Semantics for Causal Claims
	A Diagrammatic Definition
	Sometimes and Partial Causation
	Modelling an Agent's Interaction
	Conclusion

