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Two questions

1 What kind of information do we use when we judge that a causal
relation holds?

2 What are the truth conditions of causal claims?

Causality = time + modality + effective difference-making

Today
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Structural causal models

Definition (Structural causal model)
A structural causal model is a triple M = (V, E, F) where

V is a set of variables

(V, E) is a directed acyclic graph

F is a set of functions of the form

FX : R(paX)→ R(X),

one for each endogenous (i.e. has a parent) variable X ∈ V,
where paX := {Y ∈ V : (Y,X) ∈ E}



Structural causal models

The value of an endogenous variable X is determined by the values of
its parents, according to FX

Since FX are functions, the dependence is deterministic

Where U = u is an assignment of values to the exogenous variables
in V, we call u a setting or context for M

i.e. the values of the exogenous variables determine the values of all
the variables



Interventions in structural causal models

Let M = (V, E, F) be a structural causal model

Definition (Interventions as model surgery)
Mdo(X=x) is the model (Vdo(X=x), Edo(X=x), FX=x) where

Vdo(X=x) = V
Edo(X=x) = E \ {(Y,X) : Y ∈ V}
Fdo(X=x),X(u) = x for every setting u of M,
and Fdo(X=x),Y = FY for all Y ∈ V, Y 6= X

Definition (Truth conditions for interventions)
Let M be a structural causal model and u a setting of the exogenous
variables.

M, u |= [X ← x]Y = y iff Mdo(X=x), u |= Y = y
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SCMs represent dependence as direct

In causal diagrams, an arrow represents a “direct effect” of the
parent on the child, although this effect is direct only relative to a
certain level of abstraction, in that the graph omits any variables
that might mediate the effect.

— Greenland and Pearl (2011, pp. 208–09)



In the beginning, dependence was direct

Figure: Wright (1921)



Dense causal chains

In daily life and physicists’ models alike,
space and time are represented as dense

Density Between any two points there is a third

Intuitive belief: Causal influence travels through dense spacetime

There are chains of events (Ci)i∈I where,
for every Ci, Ck on the chain, there is a Cj on the chain such that

Ci causally influenced Cj and Cj causally influenced Ck.

C E



Is density compatible with direct dependence?

Question Can dense dependence be represented in terms of direct
dependence?

Intuitively, dense dependence is indirect

One can add more arrows

But still, more arrows just means more instances of direct
dependence



Wolfgang Spohn (2009)

https://doi.org/10.1007/978-1-4020-5474-7_4


A simple dense causal chain

timespace
t0

...

l x y

t0 +
|y−l|

c
...

Figure: Turning on the light at time t0

How do structural causal models represent dependence here?
Answer: A version of counterfactual dependence
(Paul, 1998; Yablo, 2002; Halpern and Pearl, 2005; Halpern, 2016; Beckers, 2016)

Let x be a point illuminated at t, and t′ = t + |y−x|
c

If x had not been illuminated at t, y would not be illuminated at t′



Formalizing dense dependence

Intuitively, dense causal chains exhibit dense dependence

Definition (Dense dependence)
M = (V, E, F) features dense dependence at Z ∈ V iff for any parent X of
Z there is a parent Y of Z distinct from X such that

M, u |= [x, y]z iff M, u |= [x′, y]z

for any setting u of the exogenous variables in M, and any values x, x′

of X, value y of Y and z of Z.

Equivalently,
FZ(x, y, o) = FZ(x′, y, o)

for any x, x′ ∈ R(X), y ∈ R(Y) and o ∈ R(paZ \ {X,Y})



Dummy parents

Definition (Dummy parent)
X is a dummy parent of Z in M iff FZ(x, o) = FZ(x′, o) for any x ∈ R(X)
and o ∈ R(paZ \ {X}).

Lemma
If every parent of Z is a dummy parent of Z, then FZ is constant.



Proposition
If dependence in M is dense at Z then FZ is a constant function.

Proof.
If dependence in M is dense at Z then for any parent X of Z, there is a parent Y of Z
with

FZ(x, y, o) = FZ(x′, y, o)

for any (y, o) ∈ R(paZ \ {X}). Then X is a dummy parent of Z, and as X was arbitrary,
every parent of X is a dummy parent of Z. Hence FZ is constant.

Intuitively, if FZ is constant then Z does not depend on any variable for
its value

Corollary
There is no structural causal model M with a variable Z such that:

Dependence in M is dense at Z
Z depends on some variable(s) for its value
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Counterfactual dependence and determinancy

A popular principle:
(Halpern and Pearl, 2005; Halpern, 2016; Beckers, 2016; Beckers and Vennekens, 2018)

Counterfactual dependence implies actual causation

If C had not occurred, E would not have occurred
C is an actual cause of E



1st Street 2nd Street

Road A Road B Road C Road D

Main Street

The robot has to get anywhere on Main Street, choosing between the
four ways at random. The robot took 1st Street and then Road B.

(1) The fact that the robot took 1st Street caused it to take Road B

To many, (1) is unacceptable



Sufficiency in our intuitive talk about causation

It is often said that causes...

‘make’ their effects happen

‘produce’ them

‘generate’ them

‘bring’ them about

But taking 1st Street did not ‘make’ the robot take Road B

Many analyses of causal claims are given in terms of SCMs

Surprisingly, sufficiency does not play a role in these theories
(Halpern, 2016; Beckers, 2016)

Though sufficiency is part of some approaches (e.g. Mackie, 1965;

Baldwin and Neufeld, 2004; Braham and van Hees, 2012)



Testing the explanation

(1) The fact that the robot took 1st Street caused it to take Road B

Hypothesis 1
(1) is unacceptable because the robot taking 1st Street was not
sufficient for it to take Road B



Causation without sufficiency

(2) The fact that the switch was flicked caused
the light to turn on.

Flicking the switch was not enough, by itself, to make the light
turn on

There needed to be power in the building, a working wire from the
switch to the light, etc.

(2) is acceptable nonetheless
Intuitive explanation: (2) is acceptable because we ‘assumed’
(‘took for granted’) facts which guarantee that, after flicking the
switch, the light will turn on



Enabling conditions

Hypothesis 2
(1) is unacceptable because there was no set of facts such that, within
that set, the robot taking 1st Street was sufficient for it to take Road B

Let’s test this:

Change the scenario to provide an enabling condition

Check whether our judgements also change



Testing the explanation

Program the robot with the rule: Always change direction!
e.g. if the robot turns left, it must then turn right

1st Street 2nd Street

Road A Road B Road C Road D

Main Street



Sufficiency: analysis

Structural causal models are deterministic

So they are forced to add enabling conditions to represent
scenarios that we can intuitively represent as non-deterministic
In our actual causal reasoning:

Sometimes enabling conditions are present
Sometimes they are not



The need for a uniform model of causality

It would be remarkably surprising if we employed

One kind of model of causation for discrete systems, and another
for dense systems

One kind of model of causation of deterministic systems, and
another kind for non-deterministic systems

To do: Create a model of causal reasoning that:
1 Allows for dense causal chains
2 Can provide non-deterministic representations of scenarios
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The essential ingredients of causality

What kind of information do we use
when we judge that a causal relation holds?

In other words, what should causal models represent?
What kind of information should they contain?



Causal models, like all models, are representations
As such, we need some semantic objects to do the representing

A semantic object is a point at which sentences are evaluated

Ingredient 1
Semantic objects (states, possible worlds, situations, ...)



There is no causality without time.

Ingredient 2
Time



How should we represent time?

We will adopt the view from classical mechanics and everyday life:
time is represented by a linear order over states
(see Maudlin 2014, New Foundations for Physical Geometry)

We index states to allow repetitions:

Definition (Token state)
A token state is a state with an index.

Definition (Path)
A path is a linearly ordered set of token states.

i.e. where S is a set of states, a path is a linearly ordered subset of
{si : s ∈ S, i < #(s)}, where # : S→ card assigns to each state a cardinal



Causal reasoning is a form of hypothetical reasoning,
one involving counterfactual thinking (see e.g. Byrne 2007)

(e.g. “if the cause had not occurred, ...”)

Evidence: The problem of causal inference

If causal reasoning was about actuality alone, inferring causation
would not be as hard as it is



Is the actual world enough?

The actual world is part of two sets that disagree on causation

https://www.nytimes.com/2016/10/28/us/placebo-buttons-elevators-crosswalks.html
https://www.bbc.com/future/article/20150415-the-buttons-that-do-nothing


Ingredient 3
Multiple possibilities

states + time ⇒ path
path + multiple possibilities ⇒ set of paths

Definition (Dynamical system)
A dynamical system is a set of paths.

Hypothesis Dynamical systems provide an adequate model of causal
reasoning
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Modelling dense dependence

timespace
t0

...

l x y

t0 +
|y−l|

c
...

Figure: Turning on the light at time t0

The definition of a dynamical system allows for states to be
densely ordered

Consider the set of paths where, for any points x, y in space and
any time t, if x is light at t then y is light at t + |y−x|

c



In dynamical systems, one can model the fact that

For any points in space x, z, if x has a causal influence on z, then
there is a point y such that, intervening on y, x no longer has a
causal influence on z
(Note: this requires a formalization of the truth conditions of
causal claims, including a treatment of intervention)
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Modelling the robot scenario

(1) The fact that the robot took 1st Street caused it to take Road B

The robot’s actions can be represented as random or as
deterministic

Random After taking 1st Street, the robot could have taken Road A
and could have taken Road B
Deterministic The robot has some mechanism to decide

We can represent both interpretations:

w

v
1st St Road A

Road B

(a) Nondeterministic

w

v

1st St ∧ p

1st St ∧¬p

Road A

Road B

(b) Deterministic

Figure: Models of the robot’s action



Free versus bound variables

Should the enabling conditions be represented by free variable (i.e.
contextually determined) or by a bound variable?

‘Assuming’, ‘Taking something for granted’ are epistemic states
If one uses interpreter-dependent notions in the analysis of causal
claims, it is hard to give objective answers to concrete questions of
causation

Subjective parameters leave causal reasoning open to manipulation

Perhaps there is an interpreter-independent characterisation
The existence of a proposition



Formalizing contextual sufficiency

Causes are contextually sufficient for their effects
If C caused E at w, then there is a set of worlds A such that

w ∈ A, and
For every world v in A and state s on v, if C is true at s then

E occurs on v at some state later than s, and
For all worlds u that agree with v up to and including state s, u ∈ A
(A is “closed under open futures”)

Scenario 1 The robot chooses which street to take at random
A must include the actual world (taking Road B)
Then by closure under open futures, A must also
include the world where the robot takes Road A

⇒ Taking 1st St did not cause the robot to take Road B

Scenario 2 The robot must change direction at every turn
A includes the fact that the robot changes direction

⇒ Taking 1st St did cause the robot to take Road B
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What in the world is a Bayesian network?

What must the world be like for X to be a parent of Y?



Bayes nets

Definition (Representing a graph)
Let (V, E) be an acyclic graph and P : R(V)→ [0,1] a probability
distribution. We say P represents (V, E) just in case, for any
X ∈ V, x ∈ R(X),

P(x | paX) = P(x | paX ,ndX)

Definition
A Bayes net is a triple B = (V, E, P), where (V, E) is an acyclic graph and
P : R(V)→ [0,1] is a probability distribution representing (V, E).



The chain rule in Bayes nets

Bayes nets generalise the chain rule from linear to acyclic graphs

Chain rule

P(x1, . . . , xn) = P(xn | x1, . . . , xn−1)P(x1, . . . , xn−1)

=

n∏
i=1

P(xn | x1, . . . , xn−1)



An observation
The chain rule w.r.t. linear orders is a special case of the rule

P(x1, . . . , xn) =

n∏
i=1

P(xn | paXn);

namely, when paXn contains at most one element.

Let E = {(Xi,Xi+1)}0<i<n and suppose P represents (V, E).

P(x1, . . . , xn) =

n∏
i=1

P(xi | paXi) (Rule above)

=

n∏
i=1

P(xn | xn−1) (Definition of E)

=

n∏
i=1

P(xn | x1, . . . , xn−1) (P represents (V, E))



Two chain rules

Let S = R(V) and s, t ∈ S
Order the variables X1, . . . ,Xn

Let s(Xi) be the value of Xi at s
Ps(t) is the probability that t is the next state, given that s is the
current state

Static chain rule

P(s) =
n∏

i=1

P(s(Xi) | s(X1), . . . , s(Xi−1))

Dynamic chain rule

Ps(t) :=
n∏

i=1

P(t(Xi) | s(X1), . . . , s(Xi−1))



Example

P(x)

X

Y

P(y | x)
P(y | x)

xy xy

xy xy

P(x)P(y | x)
P(x)P(y | x)

P(x)P(y | x)

P(x)P(y | x)



Dynamic probability

Lifting from states to sets of states. Where A,B ⊆ R(V),

PA(B) :=
∑
s∈A

(
Ps(s)

∑
t∈B

Ps(t)
)

PA(B) is the probability that the next state is a B-state, given that
the current state is an A-state

P(B | A) is the probability that the current state is a B-state, given
that the current state is an A-state

Theorem
For any Bayes net (V, E, P) and s ∈ R(V), Ps is a probability distribution.

Proof.
By induction on |V|.
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Take aways

Structural causal models and Bayesian networks offer a
marvellously user-friendly way to represent causal dependence
But they have their expressive limits

Dense dependence
Scenarios we represent as non-deterministic

Thankfully, there is an alternative: dynamical systems
Dynamical systems can represent dense dependence and
non-determinism
Every structural causal model and Bayesian net can be represented
as a dynamical system
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