1 Load data

CAT_Test <- read.delim("Data/CAT_Test.txt") #Main data
posthoc <- read.delim("Data/posthoc.txt") #Data post-hoc test

1.1 Exclude participants

CAT_Test <- subset(CAT_Test, Subject !="540") #ADHD
# N = 49

2 Hypothesis

Participants are subjected to either Condition 1 or Condition 2 (between-subjects) of the learning phase, during which they see tokens from the continuum (stimuli 1-11). Participants that did the Condition 1 learning phase are hypothesized to categorize stimuli S and D2 together, while participants that did the Condition 2 learning phase are hypothesized to categorize stimuli S and D1 together. In the test phase (8 test items), participants are asked which stimulus combines better with stimulus S: stimulus D1 or stimulus D2. Condition 1 participants are expected to have a larger preference for stimulus D2 than Condition 2 participants. This should be reflected by a main effect of Condition on choosing stimulus D1/D2.

Image 1: Design learning phase. Blue line = Conditon 1, orange line = Condition 2.
# Descriptives

#Stimulus Choice depending on condition
table(CAT_Test$Condition, CAT_Test$AnswerStim)
##              
##                D1  D2
##   Condition 1 116  84
##   Condition 2 144  48
#Proportion choosing Stimulus D1 depending on condition
tapply(CAT_Test$AnswerStimD1,list(CAT_Test$Condition),mean,na.rm=TRUE)
## Condition 1 Condition 2 
##        0.58        0.75
#Proportion choosing Stimulus D2 depending on condition
tapply(CAT_Test$AnswerStimD2,list(CAT_Test$Condition),mean,na.rm=TRUE)
## Condition 1 Condition 2 
##        0.42        0.25

3 Plot

Plot the stimulus choice (D1/D2) per Condition

p

Overall, there is a preference for stimulus D1. However, according to our expectations, this preference is smaller for participants in the Condition 1.

4 Data analysis

4.1 Set contrasts for generalized mixed effects model

Set contrast for Condition 1 vs Condition 2, as well as a contrast for the position of D2 during the test question, which was counterbalanced left/right

#Condition
CAT_Test$Condition <- as.factor(CAT_Test$Condition)
contrast <- cbind(c(+0.5, -0.5)) # Condition 1, Condition 2
colnames (contrast) <-  c("-Condition2+Condition1")
contrasts (CAT_Test$Condition) <- contrast
contrasts(CAT_Test$Condition)
##             -Condition2+Condition1
## Condition 1                    0.5
## Condition 2                   -0.5
CAT_Test$PositionD2 <- as.factor(CAT_Test$PositionD2)
contrast <- cbind(c(+0.5, -0.5)) # Left, Right
colnames (contrast) <-  c("+Left-Right")
contrasts (CAT_Test$PositionD2) <- contrast
contrasts(CAT_Test$PositionD2)
##       +Left-Right
## Left          0.5
## Right        -0.5

4.2 Generalized mixed effects model

Testing whether odds of choosing for stimulus D2 depend on Condition. Expectation: participants in Condition 1 are more likely to choose stimulus D2 while participants in Condition 2 are more likely to choose stimulus D1 (so less likely to choose stimulus D2). A significant positive main effect of Condition on the odds of choosing stimulus D2 would show a learning effect.

model1 <- glmer(AnswerStimD2~Condition*PositionD2+(PositionD2|Subject), data=CAT_Test, family = binomial,control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=2e5)))
options(width=500)
summary(model1)
## Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
##  Family: binomial  ( logit )
## Formula: AnswerStimD2 ~ Condition * PositionD2 + (PositionD2 | Subject)
##    Data: CAT_Test
## Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 2e+05))
## 
##      AIC      BIC   logLik deviance df.resid 
##    452.0    479.8   -219.0    438.0      385 
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -1.6205 -0.5417 -0.3281  0.6517  2.4595 
## 
## Random effects:
##  Groups  Name                  Variance Std.Dev. Corr 
##  Subject (Intercept)           2.212    1.487         
##          PositionD2+Left-Right 1.941    1.393    -0.48
## Number of obs: 392, groups:  Subject, 49
## 
## Fixed effects:
##                                                       Estimate Std. Error z value Pr(>|z|)    
## (Intercept)                                            -1.1128     0.2788  -3.991 6.57e-05 ***
## Condition-Condition2+Condition1                         1.2745     0.5346   2.384   0.0171 *  
## PositionD2+Left-Right                                   0.7259     0.4075   1.781   0.0748 .  
## Condition-Condition2+Condition1:PositionD2+Left-Right  -0.5753     0.7421  -0.775   0.4382    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Cn-C2+C1 PD2+L-
## Cndtn-C2+C1 -0.173                
## PstnD2+Lf-R -0.400  0.118         
## C-C2+C1:PD2  0.125 -0.353   -0.292

4.3 CIs for Condition effect

### Compute profile confidence intervals for the Condition effect
ci <- confint (model1, parm = "Condition-Condition2+Condition1")
lower.bound.logodds.model1 <- ci ["Condition-Condition2+Condition1", 1]
upper.bound.logodds.model1 <- ci ["Condition-Condition2+Condition1", 2]

lower.bound.odds.model1 <- exp(lower.bound.logodds.model1) 
upper.bound.odds.model1 <- exp(upper.bound.logodds.model1)

#Estimate and CI Condition effect:
exp(1.2745) # 3.576913
lower.bound.odds.model1 #1.295335
upper.bound.odds.model1 #11.49572

4.4 CIs for PositionD2 effect

### Compute profile confidence intervals for the PositionD2 effect
ci <- confint (model1, parm = "PositionD2+Left-Right")
lower.bound.logodds.model1 <- ci ["PositionD2+Left-Right", 1]
upper.bound.logodds.model1 <- ci ["PositionD2+Left-Right", 2]

lower.bound.odds.model1 <- exp(lower.bound.logodds.model1) 
upper.bound.odds.model1 <- exp(upper.bound.logodds.model1)

#Estimate and CI PositionDC2 effect:
exp(0.7259) # 2.06659
lower.bound.odds.model1 #0.9669446
upper.bound.odds.model1 #5.294853

4.5 Report

According to our expectations, participants in Condition 1 were 3.6 (95% CI: 1.3 … 11.5) times more likely to choose stimulus D2 than participants in the Condition 2, z = 2.384, p = 0.017.
Participants were 2.1 (95% CI: 0.97 … 5.3) times more likely to choose stimulus D2 when it was positioned left than when it was positioned right, but the effect of PositionD2 was not significant: z = 1.781, p = 0.075.

5 Posthoc test

In our posthoc test we asked 32 adults whether they thought D1 or D2 looked more like S (4 questions). There was no learning phase. Is there an “a priori” preference for S+D1?

5.1 Plot

stimulus choice (D1/D2) posthoc test

p

5.2 T-test posthoc data

Did participants choose stimulus D1 more often then would be predicted by chance?

t.test(posthoc$AnswerStimD1, mu=0.5)
## 
##  One Sample t-test
## 
## data:  posthoc$AnswerStimD1
## t = 6.5064, df = 127, p-value = 1.611e-09
## alternative hypothesis: true mean is not equal to 0.5
## 95 percent confidence interval:
##  0.6739665 0.8260335
## sample estimates:
## mean of x 
##      0.75

Answer: yes. There seems to be a preference for the combination S+D1 as opposed to S+D2.