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This supplement contains three appendices. Appendix A presents some general limit

theories that will be used in the proofs of Theorem 2.1 in Appendix B and Theorem 2.2 in

Appendix C.

A General Limit Theory

In this section, we generalize the universal law of large numbers and universal central limit

theorem in He et al. (2022) for adaptive inference with a general threshold statistic under

censoring. We invoke the notion of stable function therein: a real-valued function ϕ on

D ⊂ R+ is called stable if it is bounded in a neighborhood of 1, and there exists a finite

collection of k functions hj and fj such that

ϕ(x)− ϕ(y) =
k∑

j=1

hj(y)fj

(
x

y

)
, x, y ∈ D, (1)
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where fj is continuous at 1 and fj(1) = 0 for j = 1, . . . , k. It is easy to verify that the

constant function, logarithm function, and power function are all stable. Furthermore,

for any two stable functions ϕ and ψ on a common domain D, ϕ + ψ, ϕ − ψ, and ϕ · ψ

are all stable. This implies that, for example, any polynomial function is stable, and

ϕ(x) = logm(x) is stable for all integer m ≥ 1.

Proposition 1 (Universal LLN under Censoring). Let {(Ui, δi) : i = 1, . . . , n} be inde-

pendent copies of some bi-variate random vector (U, δ) ∈ (0, 1) × {0, 1}, where U is not

necessarily a uniform variable and may be dependent of δ. Suppose that we generate i.i.d.

random weights {ξ1, . . . , ξn} from a distribution with mean one and finite first absolute mo-

ment, possibly degenerate with ξ1 = . . . = ξn = 1, independent of {(Ui, δi) : 1 ≤ i ≤ n}.

Consider an arbitrary measurable statistic αn ∈ (0, 1) such that αn
p−→ ᾱ ∈ (0, 1), and

suppose that the marginal distribution of U is Lipschitz continuous in a neighborhood of ᾱ.

For any stable function ϕ on (0, 1] satisfying the decomposition (1) and

1

ᾱ
E [δ1[U < ᾱ]|hj(U < ᾱ)|] <∞, for all j = 1, . . . , k,

we have that

1

nαn

n∑
i=1

ξiδi1[Ui < αn]ϕ

(
Ui

αn

)
=

1

nᾱ

n∑
i=1

ξiδi1[Ui < ᾱ]ϕ

(
Ui

ᾱ

)
+ op(1)

=
1

ᾱ
E
[
δ1[U < ᾱ]ϕ

(
U

ᾱ

)]
+ op(1).

if provided the existence of the limit 1
ᾱ
E
[
δ1[U < ᾱ]ϕ

(
U
ᾱ

)]
. Note that the results remain

true if we replace δ with 1− δ everywhere.

Proof. We only prove the first equation, as the second one follows directly from the law of
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large numbers. It suffices to show that

1

nᾱ

n∑
i=1

ξiδi1[Ui < αn]ϕ

(
Ui

αn

)
− 1

nᾱ

n∑
i=1

ξiδi1[Ui < ᾱ]ϕ

(
Ui

ᾱ

)
=

1

nᾱ

n∑
i=1

ξiδi1[Ui < αn]

(
ϕ

(
Ui

αn

)
− ϕ

(
Ui

ᾱ

))
+

1

nᾱ

n∑
i=1

ξiδi (1[Ui < αn]− 1[Ui < ᾱ])ϕ

(
Ui

ᾱ

)
=: T1 + T2 = op(1).

First, we show that T1 = op(1). Recalling the decomposition (1) for stable function ϕ

and using triangle inequality, there exists functions hj and fj such that

|T1| ≤
k∑

j=1

1

nᾱ

n∑
i=1

|ξi|δi1(Ui < ᾱ) |hj (Ui/ᾱ)| |fj(ᾱ/αn)|

Observe that for every j, fj(ᾱ/αn) = fj(1) + op(1) = op(1), and by assumption

E

{
1

nᾱ

n∑
i=1

|ξi|1(Ui < ᾱ) |hj (Ui/ᾱ)|

}
= E|ξi| ·

1

ᾱ
E [δi1[Ui < ᾱ]|hj(Ui < ᾱ)|] = O(1).

Because k is finite, together with Markov inequality,

T1 =
k∑

j=1

Op(1) · op(1) = op(1).

Next, we show that T2 = op(1). We only need to consider those Ui’s lying between αn and

ᾱ, i.e. those Ui/αn lying between one and ᾱ/αn. For any small ε > 0 and large M > 0,

with probability tending to 1, |αn/ᾱ− 1| < ε2/M and then

|T2| ≤
1

nᾱ

n∑
i=1

|ξiδi|1(|Ui − ᾱ| ≤ ᾱε2/M) · sup
|x−1|≤ε2/M

|ϕ(x)|

≤ 1

nᾱ

n∑
i=1

|ξi|1(|Ui − ᾱ| ≤ ᾱε2/M) · sup
|x−1|≤ε2/M

|ϕ(x)|.

But by assumption, for some Lipschitz constant K,

1

ᾱ
E
{
|ξi|1(|Ui − ᾱ| ≤ ᾱε2/M)

}
=
E|ξi|
ᾱ

(
P(Ui ≤ ᾱ + ᾱε2/M)− P(Ui ≤ ᾱ− ᾱε2/M)

)
≤ 2E|ξi|K/Mε2.
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Combining with Markov inequality yields that, for all large n

P (|T2| > ε) ≤P
(
|T2| > ε | |αn/ᾱ− 1| < ε2/M

)
+ P

(
|αn/ᾱ− 1| > ε2/M

)
≤2P

(
1

nᾱ

n∑
i=1

|ξi|1(|Ui − ᾱ| ≤ ᾱε2/M) · sup
|x−1|≤ε2/M

|ϕ(x)| > ε

)
+ ε/2

≤2
1

ε

1

ᾱ
E
{
|ξi|1(|Ui − ᾱ| ≤ ᾱε2/M)

}
· sup
|x−1|≤ε

|ϕ(x)|+ ε/2

≤2
1

ε

2E|ξi|K
M

ε2 · sup
|x−1|≤ε

|ϕ(x)|+ ε/2 < ε,

by taking a sufficiently large M not depending on ε. It follows that T2 = op(1) as ε > 0

can be arbitrarily small.

Before showing the universal CLT under censoring, we first introduce some important

notations. With probability 1, (Xi, δi) = (Q(1 − Ui), δi) where Ui’s are i.i.d. uniform

variables on [0, 1] and Q is the generalized quantile function of Xi. Define Vi = ρ̃(Ui),

where ρ̃(x) = P(Ui < x, δi = 1) is a continuous improper distribution function with total

mass p1 := ρ̃(∞) = P(δi = 1) > 0. Consider the empirical processes

Ūn(x) :=
1√
n

n∑
i=1

(1[Ui < x]− x), 0 ≤ x ≤ 1;

V̄n(x) :=
1√
n

n∑
i=1

(1[Vi < x, δi = 1]− x), 0 ≤ x ≤ p1.

Similarly, define the random weighted empirical processes

Ûn(x) :=
1√
n

n∑
i=1

(ξi − 1)(1[Ui < x]− x), 0 ≤ x ≤ 1;

V̂n(x) :=
1√
n

n∑
i=1

(ξi − 1)(1[Vi < x, δi = 1]− x), 0 ≤ x ≤ p1.

The following lemma follows from the Chibisov-O’Reilly theorems.

Lemma A.1 (Chibisov-O’Reilly Theorem). Let ξ1, ξ2, . . . be nondegenerate random weights

with mean one taken from a sequence of i.i.d. random variables with subexponential distri-
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bution. For any η ∈ (0, 1/2), under Skorokhod construction,

sup
x∈[0,1]

|Ūn(x)− B̄1(x)|
xη

p−→ 0, sup
x∈[0,p1]

|V̄n(x)− B̄2(x)|
xη

p−→ 0,

and similarly

sup
x∈[0,1]

|Ûn(x)− B̂1(x)|
xη

p−→ 0, sup
x∈[0,p1]

|V̂n(x)− B̂2(x)|
xη

p−→ 0,

where (B̄1, B̄2) and (B̂1, B̂2) are independent copies of (B1, B2), a bivariate Gaussian pro-

cess whose margins B1, B2 are Brownian bridges and the cross-covariance structure is given

by

cov(B1(s), B2(t)) = min{ρ̃(s), t} − st.

Proof. Following the proof of Lemma D.2 in He et al. (2022), it suffices to prove the lemma

substantiating (Ûn, V̂n) with the approximate processes (Ûn, V̂n) given by

Ûn(x) :=
1√∑n
i=1 ξ̃

2
i

n∑
i=1

ξ̃i(1[Ui < x]− x), 0 ≤ x ≤ 1;

V̂n(x) :=
1√∑n
i=1 ξ̃

2
i

n∑
i=1

ξ̃i(1[Vi < x, δi = 1]− x), 0 ≤ x ≤ p1,

where ξ̃i = ξi − 1
n

∑n
i=1 ξi. This is because they have shown that

sup
x∈[0,1]

∣∣∣Ûn(x)− B̂1(x)
∣∣∣

tη
= (1 + op(1)) sup

x∈[0,1]

∣∣∣Ûn(x)− B̂1(t)
∣∣∣

tη
+ op(1),

and similar arguments hold for V̂n.

Consider the combined weighted process (Ūn, V̄n, Ûn, V̂n). By the Lebesgue dominated

theorem, it suffices to consider a conditional statement given the sample path of random

weights ξi = ξi(ω), or equivalently ξ̃i = ξ̃i(ω), for any ω ∈ Ω from a set Ω with probability

measure 1. This is because the weights are independent of the observations, and the joint

limiting distribution does not depend on the weights. In particular, for sub-exponential
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weights ξi, we can easily choose such a set via the Borel–Cantelli lemma satisfying the

asymptotic negligibility conditions required for the following:

(i) Finite-dimensional convergence holds by applying the Lindeberg central limit theorem

with the boundedness of the indicator function.

(ii) The marginal tightness of Ûn and V̂n follows from Theorem 1, Chapter 3, in Shorack

and Wellner (1986).

Moreover, the marginal tightness of Un and Vn are available from Shorack and Wellner

(1982), and these processes do not depend on the random weights. Hence, one can conclude

that, conditional on the sample path of random weights from a set with probability 1,

(Ūn, V̄n, Ûn, V̂n)
w−→
(
B̄1, B̄2, B̂1, B̂2

)
in the product of generalized Skorohod space on [0, 1] × [0, p1] × [0, 1] × [0, p1] of left-

continuous functions, where ‘
w−→’ denotes weak convergence. Therefore, under Skorohod

construction,

(Ūn, V̄n, Ûn, V̂n)
a.s.−−→

(
B̄1, B̄2, B̂1, B̂2

)
where the processes on the left are equal to the original ones only in distribution. Note

that we can extend the probability space to include the random weights. The rest follows

by applying the Chibisov-O’Reilly Theorem to each marginal process in this probability

space (see Chibisov, 1964, O’Reilly, 1974 and Shorack and Wellner, 1982).

Now, we present our universal CLT under censoring.

Proposition 2 (Universal CLT under Censoring). Suppose that the threshold statistic un

satisfies Assumption 2.2, where we define adaptive exceeding probability αn = S0(un) and its

limit ᾱ ∈ (0, 1). Consider a stable function ϕ defined in (1) on an open domain D ⊂ (0,∞)

including (0, 1] such that
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(i) ϕ and its base functions hj, 1 ≤ j ≤ k, all have Lebesgue integrable derivatives on

every closed sub-interval of D; note that each sub-interval is bounded away from zero.

(ii) For some η ∈ (0, 1/2), lim
t↓0

tη|ϕ(t)| = 0,
∫ 1

0
tη|ϕ′(t)|dt <∞ and

∫ 1

0
tη|h′j(t)|dt <∞ for

all 1 ≤ j ≤ k.

(iii) The derivatives ϕ′ and h′j are continuous in a neighborhood of one.

Let (Un,Vn) denote one of the multivariate processes, either (Ūn, V̄n) or (Ûn, V̂n). Cor-

respondingly, define the limiting processes (B1, B2) to be (B̄1, B̄2) or (B̂1, B̂2), respectively

from Lemma A.1. Under the same probability space of Lemma A.1,

∫ 1

0

ϕ(t)dWn,i(αnt) = ϕ(1)Wi(ᾱ)−
∫ 1

0

Wi(ᾱt)dϕ(t) + op(1), i = 1, 2.

where Wn,1(t) = Un(S(Q0(1− t))), Wn,2(t) = Vn(S̃(Q0(1− t))), W1(t) = B1(S(Q0(1− t))),

and W2(t) = B2(S̃(Q0(1− t))).

Proof. First, we show that limt↓0 ϕ(t)Wn,i(αnt) = limt↓0 t
ηϕ(t) · limt↓0 t

−ηWn,i(αnt) = op(1).

We only need to show limt↓0 t
−ηWn,i(αnt) = Op(1). By Lemma A.1

lim
t↓0

t−ηWn,i(αnt) = lim
t↓0

t−ηWi(αnt) + op(1).

Consider the case for i = 1. By O’Reilly (1974) theorem, we also have that, with probability

1, uniformly for t ∈ (0, 1]

t−η|W1(αnt)| =
∣∣∣∣B1(S(Q0(1− αnt)))

(S(Q0(1− αnt)))
η

∣∣∣∣ (S(Q0(1− αnt))

t

)η

≤ sup
x∈(0,1)

∣∣∣∣B1(x)

xη

∣∣∣∣ · (αnt

t

)η

≤ sup
x∈(0,1)

∣∣∣∣B1(x)

xη

∣∣∣∣ = Op(1),

where we use the fact that 0 < S̃(Q0(1 − ᾱt)) ≤ S(Q0(1 − ᾱt)) ≤ ᾱt all t ∈ (0, 1) for the

first inequality. The case for i = 2 is similar and omitted.
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The integration by parts formula then gives that∫ 1

0

ϕ(t)dWn,i(αnt) =ϕ(1)Wn,i(αn)− op(1)−
∫ 1

0

Wn,i(αnt)dϕ(t)

=ϕ(1)Wn,i(αn)− op(1)−
∫ αn

0

Wn,i(t)dϕ(t/αn). (2)

Using the uniform convergence in Lemma A.1 and stochastic continuity of Brownian bridge

(and the continuity assumption of S and S̃ around the neighborhood of ū = Q0(1− ᾱt)),

Wn,i(αn) = Wi(αn) + op(1) = Wi(ᾱ) + op(1). (3)

Furthermore, using expansion (1) for stable function ϕ,

ϕ(t/αn)− ϕ(t/ᾱ) =
k∑

j=1

hj(t/ᾱ)fj(αn/ᾱ).

It follows that ∫ αn

0

Wn,i(t)dϕ(t/αn) =

∫ αn

0

Wn,i(t)dϕ(t/ᾱ)

+
k∑

j=1

fj(αn/ᾱ)

∫ αn

0

Wn,i(t)dhj(t/ᾱ).

The leading term (i.e., first term above) equals to∫ αn/ᾱ

0

Wn,i(ᾱt)dϕ(t) =

∫ 1

0

Wn,i(ᾱt)dϕ(t) +

∫ αn/ᾱ

1

Wn,i(ᾱt)dϕ(t)

=

∫ 1

0

Wn,i(ᾱt)dϕ(t) + op(1),

where we use the stochastic continuity of Wn,i(ᾱt) from Lemma A.1 and the boundedness

of ϕ′ around one in the last step. Similarly, the remainder terms∫ αn

0

Wn,i(t)dhj(t/ᾱ) =

∫ 1

0

Wn,i(ᾱt)dhj(t) +

∫ αn/ᾱ

1

Wn,i(ᾱt)dhj(t)

=

∫ 1

0

Wn,i(ᾱt)dhj(t) + op(1)

=

∫ 1

0

(
t−ηWn,i(ᾱt)

)
tηh′j(t)dt+ op(1) = Op(1),
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where in the last step we invoke from above that supt∈(0,1] |t−ηWn,i(ᾱt)| = Op(1) and the

assumption that
∫ 1

0
tη|h′j(t)|dt < ∞. But fj(αn/ᾱ) = fj(1) + op(1) = op(1) by continuous

mapping theorem for every j. Collecting the asymptotic approximations above gives that

∫ αn

0

Wn,i(t)dϕ(t/αn) =

∫ 1

0

Wn,i(ᾱt)dϕ(t) + op(1).

Recall that 0 < S̃(Q0(1− ᾱt)) ≤ S(Q0(1− ᾱt)) ≤ ᾱt all t ∈ (0, 1). Applying Lemma A.1,

we can replace Wn,i with their Wi in the last line. Specifically, when i = 1,

∫ 1

0

Wn,1(ᾱt)h
′
j(t)dt =

∫ 1

0

Un(S(Q0(1− ᾱt)))

Sη(Q0(1− ᾱt))

(
S(Q0(1− ᾱt))

ᾱt

)η

(ᾱt)ηh′j(t)dt.

=

∫ 1

0

B1(S(Q0(1− ᾱt)))

Sη(Q0(1− ᾱt))

(
S(Q0(1− ᾱt))

ᾱt

)η

(ᾱt)ηh′j(t)dt+ op(1)

=

∫ 1

0

W1(ᾱt)h
′
j(t)dt+ op(1),

where the second step follows from Lemma A.1 and the fact that

∫ 1

0

(
S(Q0(1− ᾱt))

ᾱt

)η

(ᾱt)η|h′j(t)|dt ≤
∫ 1

0

(ᾱt)η|h′j(t)|dt = ᾱη

∫ 1

0

tη|h′j(t)|dt <∞.

The case for i = 2 is completely analogous, and we omit the details. Therefore, we have

the final approximation that

∫ αn

0

Wn,i(t)dϕ(t/αn) =

∫ 1

0

Wi(ᾱt)dϕ(t) + op(1). (4)

Combining equations (2)–(4) completes the proof.

B Proof of Theorem 2.1

Let θ = (γ, log σ)⊤ and Θε
n = {θ ∈ (−1/2,∞) × R :

∥∥∥θ − θ
(n)
0

∥∥∥ < n−1/2+ε}, where

θ
(n)
0 = (γ0, log σαn)

⊤ denotes the adaptive true value. For i-th observation, denote its

exceedance likelihood by li(θ|un) = 1[Xi > un]ℓi(θ|un) and define the sample score vector
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for θ by

gi(θ|un) = ∇θli(θ|un) = 1[Xi > un]∇θℓi(θ|un),

where, for Xi > un,

∇θℓi(θ|un) =: δis(θ|Xi − un) + (1− δi)w(θ|Xi − un).

The function s(θ|x) = ∇θ log(−G′(x|γ, σ)) is the lifetime score function for generalized

Pareto distributions with respect to θ, and the function w(θ|x) = ∇θ log(G(x|γ, σ)) is

the censoring score function. For presentation convenience, whenever needed, all the limit

elements are defined on the same probability space via the Skorohod construction in Lemma

A.1. They are only equal in distribution to the original elements, and the joint convergence

in probability in this probability space implies the joint weak convergence in the original

space.

B.1 Adaptive Maximum Likelihood Estimation

We establish the following fundamental results for our maximum likelihood estimation

adaptive to a universal threshold statistic un. Let ‘
p−→’ denote convergence in probability.

(a) With probability tending to 1, the log-likelihood function is well-defined, that is,

n∑
i=1

li(θ|un) > −∞

uniformly in the parameter space cl(Θε
n) with ε ∈ (0,min{γ0 + 1/2, 1/2}), where cl(·)

denotes the set closure.

(b) Under the Skorohod construction of Lemma A.1 for (Ūn, V̄n),

1
√
nαn

n∑
i=1

gi(θ
(n)
0 |un)

p−→ Υ
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where Υ is defined the same way in Theorem 2.1 through the Brownian bridges (B1, B2).

Note that here the random elements are only equal to the original ones in distributions.

(c) supθ∈cl(Θε
n)

∥∥∥ 1
nαn

∑n
i=1∇gi(θ|un) + I(ᾱ)

∥∥∥ p−→ 0, where the unconditional Fisher infor-

mation matrix I(ᾱ) is defined in (7) in the main document.

Claim (a) is straightforward for the case γ0 ≥ 0 where
{
1 + γXi−un

σ
: Xi − un

}
is

bounded below by a strictly positive number, say, 1/2 with probability tending to one.

When γ0 < 0, using the fact that Xn:n ≥ Tn:n, we can show that

1 + γ · Xn:n − un
σ

≥ 1 + γ · Tn:n − un
σ

> 0

uniformly for Θε
n with probability tending to 1, where the proof of the last step is available

in Section E.2 of He et al. (2022).

Next, we prove claim (b). Recall the score functions of ℓ(θ|x, δ) are given by

∇θℓ(θ|x, δ) =δs(θ|x) + (1− δ)w(θ|x)

=− δ(w(θ)− s(θ|x)) + w(θ|x) =: −δh(θ|x) + w(θ|x),

where h(θ|x) = ∇θ log λ(θ|x). The next lemma follows from the integration by parts

formula.

Lemma B.1. Write in short that hi(x) = hi(γ0, log σαn|x) where αn = S0(un). The

adaptive score equations are correct, that is, with probability 1

−
∫ ∞

un

h(x− un)dS̃(x) +

∫ ∞

un

w(x− un)dS(x) = 0, (5)

where S̃(x) = P(X > x, δ = 1) is a possibly improper censored survival function.

Proof. Observe that S̃(x) = P(X > x, δ = 1) = −
∫∞
x
(1 − H)dS0 and S(x) = S0(x)(1 −

H(x)). Substituting S0(x) = αnG0(x − un) with G0(x) := G(x|γ0, σαn) for x > un > u0
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yields that

S(x) = αnG0(x− un)(1−H(x))

and

S̃ ′(x) = αn(1−H(x))G′
0(x− un) = −S(x)λ0(x− un),

where λ0(x) := λ(θ
(n)
0 |x). It follows that∫ ∞

un

h(x− un)dS̃(x) =

∫ ∞

un

∇θλ(θ
(n)
0 |x)S(x)dx

=−
∫ ∞

un

∂

∂x
w(θ

(n)
0 |x− un)S(x)dx =

∫ ∞

un

w(θ
(n)
0 |x− un)dS(x)

where the last step follows from the integration by parts formula.

We have the following formulas by direct calculations. The first part for lifetime score

functions is due to Fact 2 in He et al. (2022), and the other part for censoring score functions

follows from similar calculations.

Fact 1. For all α, αt ∈ (0, α0),

−∇θs(γ0, log σα|Q0(1− αt)−Q0(1− α)) =

ϕ1,1,γ0(t) ϕ1,2,γ0(t)

ϕ1,2,γ0(t) ϕ2,2,γ0(t)

 =: Φγ0(t)

and

−∇θw(γ0, log σα|Q0(1− αt)−Q0(1− α)) =

ψ1,1,γ0(t) ψ1,2,γ0(t)

ψ1,2,γ0(t) ψ2,2,γ0(t)

 := Ψγ0(t),

where

ϕ1,1,γ0(t) =
2

γ30

(
−γ0 log t−

3 + γ0
2

+ (γ0 + 2)tγ0 − 1 + γ0
2

t2γ0
)
,

ϕ1,2,γ0(t) =
1

γ20

(
1− (2 + γ0)t

γ0 + (1 + γ0)t
2γ0
)
, ϕ2,2,γ0(t) =

1 + γ0
γ0

(
tγ0 − t2γ0

)
,

ψ1,1,γ0(t) =
2

γ30

(
−γ0 log t−

3

2
+ 2tγ0 − 1

2
t2γ0
)
,

ψ1,2,γ0(t) =
1

γ20
(1− tγ0)2, ψ2,2,γ0(t) =

1

γ0

(
tγ0 − t2γ0

)
12



being well defined for γ0 = 0 by continuity as

ϕ1,1,0(t) = −2

3
(log t)3 − (log t)2, ϕ1,2,0(t) = (log t)2 + log t, ϕ2,2,0(t) = − log t,

ψ1,1,0(t) = −2

3
(log t)3 , ψ1,2,0(t) = (log t)2 , ψ2,2,0(t) = − log t.

Observe that

S̃(x) = P (Xi > x, δi = 1) = P(Ui < S(x), δi = 1) = P(Vi < ρ̃(S(x)), δi = 1) = ρ̃(S(x)).

With probability 1, using Lemma B.1 we can rewrite that

1

n

n∑
i=1

gi(γ0, log σᾱn|Xi − un, δ)

=

∫ ∞

un

h(x− un)dV̄n(S̃(x))−
∫ ∞

un

w(x− un)dŪn(S(x))

=−
∫ 1

0

h(Q0(1− αnt)−Q0(1− αn))dV̄n(S̃(Q0(1− αnt)))

+

∫ 1

0

w(Q0(1− αnt)−Q0(1− αn))dŪn(S(Q0(1− αnt))) =: J1 + J2.

Recall from Proposition 2 thatWn,1(αnt) = Ūn(S(Q0(1−αnt))) andWn,2(αnt) = V̄n(S̃(Q0(1−

αnt))). Also recall the expansion of the high quantile function Q0 for 0 < αnt ≤ αn < α0

given by

Q0(1− αnt)−Q0(1− αn) =


σαn

γ0
(t−γ0 − 1) γ0 ̸= 0,

σαn log(1/t) γ0 = 0,

where α0 = S0(u0). Therefore, using Fact 1, we can rewrite that

J1 = −
∫ 1

0

h(Q0(1− ᾱnt)−Q0(1− ᾱn))dWn,2(αnt) = −
∫ 1

0

ϕ1,γ0(t)dWn,2(αnt)

and

J2 =

∫ 1

0

w(Q0(1− ᾱnt)−Q0(1− ᾱn))dWn,1(αnt) =

∫ 1

0

ϕ2,γ0(t)dWn,1(αnt),

13



where

ϕ1,γ0(t) =

γ−1
0 (1− tγ0)

tγ0

 and ϕ2,γ0(t) =

γ−2
0 (−γ0 log t+ tγ0 − 1)

γ−1
0 (1− tγ0)

 .
When γ0 = 0, we interpret ϕ1,γ0 and ϕ1,γ0 as their continuous extension given by ϕ1,0(t) =

[− log t, 1]T and ϕ2,0(t) = [1
2
(log t)2, − log t]T , respectively. The rest follows from Proposi-

tion 2. Note that we rewrite the limit using ψi,γ0(t) = ϕ′
i,γ0

(t) for i = 1, 2.

It remains to prove claim (c). The following formula is due to Gertsbakh (1995).

Fact 2. For any fixed u > u0 with α = S0(u) > 0,

− 1

α
E[∇gi(γ, log σ|u)|Ci − u = z > 0] = I(γ, log σ|z).

Moreover, we have the following formulas for the Hessian matrix. The first part for life-

time score functions s(γ, log σ|x) = (s1(γ, log σ|x), s2(γ, log σ|x))⊤ is due to Fact 1 in He et

al. (2022), and the other part for censoring score w(γ, log σ|x) = (w1(γ, log σ|x), w2(γ, log σ|x))⊤

can be obtained similarly by straightforward calculations.

Fact 3. Given any threshold statistic u, the negative Hessian matrix is given by

1

nα

n∑
i=1

∇gi(γ, log σ|u) =
1

nα

n∑
i=1

δi∇s(γ, log σ|Ti − u)

+
1

nα

n∑
i=1

(1− δi)∇w(γ, log σ|Ci − u),

where

−∂s1(γ, log σ|x)
∂γ

=
2

γ3

(
log
(
1 + γ

x

σ

)
− γ · x/σ

1 + γ x
σ

− γ2 + γ3

2

x2/σ2(
1 + γ x

σ

)2
)
,

−∂s1(γ, log σ|x)
∂ log σ

=− ∂s2(x; γ, log σ, u)

∂γ
=
x2/σ2 − x/σ(

1 + γ x
σ

)2 ,

−∂s2(γ, log σ|x)
∂ log σ

=(1 + γ)
x/σ(

1 + γ · x
σ

)2 ,
14



−∂w1(γ, log σ|x)
∂γ

=
2

γ3

(
log
(
1 + γ

x

σ

)
− γ · x/σ

1 + γ x
σ

− γ2

2

x2/σ2(
1 + γ x

σ

)2
)
,

−∂w1(γ, log σ|x)
∂ log σ

=− ∂w2(x; γ, log σ, u)

∂γ
=

x2/σ2(
1 + γ x

σ

)2 ,
−∂w2(γ, log σ|x)

∂ log σ
=

x/σ(
1 + γ · x

σ

)2 .
Note that the above derivatives are well defined for γ = 0 by continuity.

To control the Hessian matrix in the entire local parameter space Θε
n, we use the following

lemma. Its proof is the same as that of Lemma E.3 in He et al. (2022) and omitted.

Lemma B.2. Uniformly for (γ, log σ)⊤ ∈ Θε
n with ε ∈

(
0,min{γ0 + 1

2
, 1
2
}
)
,

∥∇θs(γ, log σ|Q0(1− αnt)− un)−∇θs(γ0, log σαn|Q0(1− αnt)− un)∥ = op(1) · ϕ(t)

and

∥∇θw(γ, log σ|Q0(1− αnt)− un)−∇θw(γ0, log σαn|Q0(1− αnt)− un)∥ = op(1) · ϕ(t),

where ϕ(t) =
∑3

i=1(− log t)i + tγ0 + t2γ0, t ∈ (0, 1) and the op(1)-terms are uniform for

t ∈
(

1
2nᾱ

, 1
)
.

With a slight abuse of notation, define Ui = S0(Ti) and Vi = S0(Ci), where S0 denotes the

(uncensored) survival distribution of T . Combining Facts 1 and 3, we have

− 1

nαn

n∑
i=1

∇gi(θ(n)
0 )

=
1

nαn

n∑
i=1

δi1[Ui < αn]Φγ0(Ui/αn) +
1

nαn

n∑
i=1

(1− δi)1[Vi < αn]Ψγ0(Vi/αn).

Observe that

P(Vi ≤ x, δi = 1) ≤ P(Ui ≤ x, δi = 1) ≤ P(Ui ≤ x) ≤ x.

15



Together with integration by parts formula, we have, for a ∈ (−1,∞) and α ∈ (0, 1)

0 ≤
∫ α

0

xadP(Vi ≤ x, δi = 1)

≤αa+1 + {|a|+ 1}
∫ α

0

P(Vi ≤ x, δi = 1)xa−1dx

≤αa+1 + {|a|+ 1}
∫ α

0

xadx = αa+1 + {|a|+ 1} α
a+1

a+ 1
<∞. (6)

Similarly, we can show that for 1 ≤ a ≤ 3 and α ∈ (0, 1)

0 ≤
∫ α

0

(− log x)adP(Vi ≤ x, δi = 1) ≤ (− logα)aα + (|a|+ 1)

∫ α

0

(− log x)a−1dx <∞. (7)

Applying Proposition 1 entry-by-entry twice using (6), (7), and the assumption 2γ0 > −1

to {(Ui, δi) : 1 ≤ i ≤ n} and {(Vi, 1− δi) : 1 ≤ i ≤ n}, respectively, we have

− 1

nαn

n∑
i=1

∇gi(θ(n)
0 ) =− 1

nᾱ

n∑
i=1

∇gi(θ0) + op(1)

p−→− 1

ᾱ
E[∇gi(θ0)] = I(ᾱ),

where θ0 = (γ0, log σᾱ)
⊤ and the last equation follows from Fact 2 and the law of iterated

expectations. Furthermore, because Ui’s are i.i.d. uniform variables, we have

min
1≤i≤n

S0(Xi) = min
1≤i≤n

max{Ui, Vi} ≥ min
1≤i≤n

Ui ≥
1

2n

with probability tending to 1. Applying Lemma B.2 and the stable function ϕ(t) > 0

therein, we have

sup
θ∈Θε

n

∥∥∥∥∥ 1

nαn

n∑
i=1

∇gi(θ)−
1

nαn

n∑
i=1

∇gi(θ(n)
0 )

∥∥∥∥∥
= op(1) ·

1

nαn

n∑
i=1

δi1[Ui < αn]ϕ

(
Ui

αn

)
+ op(1) ·

1

nαn

n∑
i=1

(1− δi)1[Vi < αn]ϕ

(
Vi
αn

)
p−→ 0 · 1

ᾱ
E
[
δi1[Ui < ᾱ]ϕ

(
Ui

ᾱ

)]
+ 0 · 1

ᾱ
E
[
(1− δi)1[Vi < ᾱ]ϕ

(
Vi
ᾱ

)]
= 0,

where we apply Proposition 1 twice to {(Ui, δi) : 1 ≤ i ≤ n} and {(Vi, 1− δi) : 1 ≤ i ≤ n},

respectively, in the last line by invoking (6) and (7) again.
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B.2 Existence of MLE and Joint Convergence

We first prove the existence of the maximum likelihood estimator, that is, part (1) of

Theorem 2.1. It follows from claim (a) in the last section that, with probability tending

to 1, the likelihood function
∑n

i=1 li(θ|un) is well-defined and continuous in cl(Θ̄ε
n). Under

such an event, applying the Weierstrass theorem yields the existence of a maximum point

θ̂n ∈ cl(Θ̄ε
n). However, uniformly for all boundary points θ = θ

(n)
0 +n−1/2+εw ∈ cl(Θ̄ε

n)\Θ̄ε
n

with ∥w∥ = 1, it follows from Taylor expansion in conjunction with claims (b) and (c) that

1

nαn

n∑
i=1

li(θ|un)

=
1

nαn

n∑
i=1

li(θ
(n)
0 |un) + n−1/2+ε 1

nαn

n∑
i=1

gi(θ
(n)
0 |un)w − n−1+2ε1

2
wT (I(ᾱ) + op(1))w

=
1

nαn

n∑
i=1

li(θ
(n)
0 |un) + op((nαn)

−1+2ε)− n−1+2ε1

2
wTI(ᾱ)w.

As I(ᾱ) is positive definite, with probability tending to 1, for these boundary points, we

have

1

nαn

n∑
i=1

li(θ|un) <
1

nαn

n∑
i=1

li(θ
(n)
0 |un) ≤

1

nαn

n∑
i=1

li(θ̂n|un),

implying that the estimator θ̂n is in the interior of cl(Θε
n).

Next, we prove part (2) of Theorem 2.1. Using Taylor expansion, for some θ̂
∗
∈ Θε

n

between θ̂ and θ(0)
n

√
nαn

(
θ̂ − θ(0)

n

)
=

(
1

nαn

n∑
i=1

∇gi(θ̂
∗
|un)

)−1
1

√
nαn

n∑
i=1

gi

(
θ
(n)
0 |un

)
.

Using claims (b) and (c) in the last section and replacing αn with limit ᾱ yields that, under

the same Skorohod construction of Lemma A.1,

√
nᾱ
(
θ̂ − θ(0)

n

)
=

√
nᾱ (γ̂ − γ0, log σ̂ − log σαn)

⊤ p−→ I(ᾱ)−1Υ;

That is, using the delta method,

√
nᾱ

(
γ̂ − γ0,

σ̂

σαn

− 1

)⊤
p−→ I(ᾱ)−1Υ. (8)
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It remains to derive the limit of the product-limit process under the same Skorohod

construction. Define the empirical process of cumulative hazard and the product-limit

process by

L̄n(x) =
√
n
(
Λ̂(x)− Λ0(x)

)
and S̄n(x) =

√
n
(
Ŝ0(x)− S0(x)

)
The following lemma first appears in Breslow and Crowley (1974), Theorems 4 and 5.

See Burke, Csörgő, and Horváth (1981), Theorem 4.2, for comments on the proofs in the

aforementioned paper and corrections in the context of strong approximation. Recall the

construction (Xi, δi) = (Q(1−Ui), δi) and Vi = ρ̃(Ui) from Appendix A. The key idea is to

exploit the relation

− logS0(t) = Λ0(t) =

∫ 1

S(t)

x−1dρ̃(x),

and to approximate− log Ŝ0(t) by the empirical cumulative hazard rate Λ̂(t) =
∑

Xi≤t
δi∑

j 1[Xj>Xi]

which can be rewritten as

Λ̂(t) =

∫ 1

S(t)

[ρn(x)]
−1dρ̃n(x),

Here, (ρn(x), ρ̃n(x)) are the empirical version of (x, ρ̃(x)) given by

ρn(x) :=n
−1

n∑
i=1

1 [Ui < x]

ρ̃n(x) :=n
−1

n∑
i=1

1 [Ui < x, δi = 1] .

Observe that Ūn =
√
n(ρn(x) − x) and V̄n(ρ̃(x)) =

√
n(ρ̃n(x) − ρ̃(x)). Our proof is com-

pletely analogous to that of its bootstrap version in the next section, namely Lemma C.2

below, and therefore omitted. Note that the everywhere-continuity assumption of the cen-

soring time C is not necessary as in Horváth and Yandell (1987); see also Horváth (1980).

Lemma B.3. Under the Skorohod construction of Lemma A.1 for (Un,Vn) = (Ūn, V̄n),

sup
0≤x≤τ

∣∣L̄n(x) + Z(S(x))
∣∣ p−→ 0 and sup

0≤x≤τ

∣∣S̄n(x)− S0(x)Z(S(x))
∣∣ p−→ 0,
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where τ ≥ 0 is any finite time point with S(τ) > 0 and Z is the Gaussian process defined

in Theorem 2.1 via the limit (B1, B2) of (Ūn, V̄n).

Finally, combining (8) and Lemma B.3 completes the proof of Part (b) of Theorem 2.1.

C Proof of Theorem 2.2

C.1 Weak Convergence of RandomWeighted Product-Limit Pro-

cess

For presentation convenience, we omit the superscript and just write the random weights

ξ = (ξ1, . . . , ξn)
⊤ in short of ξ(b) = (ξ

(b)
1 , . . . , ξ

(b)
n )⊤. Define the random weighted estimator

of the cumulative hazard rate by

Λ̂(t; ξ) :=
∑
Xi≤t

δiξi∑
Xj>Xi

ξj
.

Note that the denominator
∑

Xi>t ξi ≥ ξn,n > 0 when Xn,n > t, which occurs with probabil-

ity tending to 1 uniformly for t ∈ [0, τ ]. The following lemma bounds the difference between

the estimators − log Ŝ(t; ξ) and Λ̂(t; ξ) of the cumulative hazard rate stochastically.

Lemma C.1. Let τ be any finite value such that S(τ) > 0. For i.i.d. random weights ξi’s

from a subexponential distribution with mean one (possibly degenerate),

sup
0≤t≤τ

∣∣∣− log Ŝ0(t; ξ)− Λ̂(t; ξ)
∣∣∣ = Op

(
(log n)2 n−1

)
.

Proof. Let N(t) =
∑n

i=1 1[Xi > t] and Ξ(i) =
∑

j>i ξj,n. Using the condition S(τ) > 0,

with probability tending to 1, τ < Xn,n and thus Ξ(i) > 0 uniformly for i such that

Xi:n ≤ τ . First, define an approximation of Λ̂(t; ξ) given by

Λ̃(t; ξ) =
∑

Xi:n≤t

δi,nξi,n
Ξ(i) + ξi,n
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and we shall show that

sup
0≤t≤τ

∣∣∣− log Ŝ0(t; ξ)− Λ̃(t; ξ)
∣∣∣ = Op

(
(log n)2 n−1

)
. (9)

Note the following elementary inequality:

0 < − log(1− (z + 1)−1)− (z + 1)−1 < (z(z + 1))−1 < z−2, z > 0.

Substituting z = Ξ(i)/ξi,n gives that

0 <− log ΠXi:n≤t

(
1− ξi,n

Ξ(i) + ξi,n

)δi,n

−
∑

Xi:n≤t

δi,nξi,n
Ξ(i) + ξi,n

=
∑
Xi≤t

δi

{
− log

(
1− ξi

Ξ(i) + ξi,n

)
− ξi

Ξ(i) + ξi,n

}

<
∑
Xi≤t

δi

(
Ξ(i)

ξi

)−2

≤
(
max
1≤i≤n

ξi

)2 n−N(t)∑
i=1

(Ξ(i))−2 ≤
(
max
1≤i≤n

ξi

)2 n−N(τ)∑
i=1

(Ξ(i))−2 . (10)

Next, we use the well-known bound of the sample maximum for sub-exponential distribu-

tion:

max
1≤i≤n

ξi = Op(log n), (11)

which can be shown using the Bonferroni method and the sub-exponential tail probability

bound. Moreover, it is elementary to show that N(τ)/(nS(τ))
p−→ 1 using the Hoeffding’s

inequality, and therefore with probability tending to one

n−N(τ)∑
j=1

(Ξ(j))−2 ≤
n− 1

2
nS(τ)∑

j=1

(Ξ(j))−2 .

But by Bernstein’s inequality, there exists some absolute constantM > 0 and sub-exponential

norm K > 0 such that for small t > 0,

n− 1
2
nS(τ)∑

j=1

P
(∣∣∣∣ Ξ(j)n− j

− 1

∣∣∣∣ > t

)
≤

n− 1
2
NS(τ)∑

j=1

2(n− j) exp

(
−M (n− j)t2

K2

)

≤
n−1∑

j= 1
2
nS(τ)

2j exp

(
−M jt2

K2

)
→ 0
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as the lower bound 1
2
nS(τ) → ∞. It follows from the Bonferroni method that

n−N(τ)∑
j=1

(Ξ(j))−2 = Op

n− 1
2
nS(τ)∑

j=1

(n− j)2

 = Op(1/(nS(τ))) = Op(n
−1).

Combining this with (10) and (11) yields (9). Next, observe that

0 ≤Λ̂(t; ξ)− Λ̃(t; ξ)

=
∑

Xi:n≤t

δi,nξi,n(
∑

j≥i ξj,n −
∑

Xj:n>Xi:n
ξj,n)(∑

Xj>Xi:n
ξj

)(∑
j≥i ξj,n

)
≤

∑
Xj>τ

ξj

−2 ∑
Xi≤τ

δiξi ∑
Xj=Xi

ξj


≤

(∑
i

ξi1[Xi > τ ]

)−2∑
i

∑
j

(δiξiξj1[Xj = Ti]) .

The first term
∑

i ξi1[Xi > τ ] ≥ ξn,n1[Xn:n > τ ] > 0 is positive with probability tending

to one. Furthermore, because P(Tj = Ti) = 0 by the continuity of S0,

P(Xj = Ti, δi = 1) = P(Cj = Ti, δi = 1) = 0,

where we also use the independence between Cj and (Ti, δi) in the last step. This implies

that
∑

i

∑
j (δiξiξj1[Xj = Ti]) = 0 with probability one. It follows that Λ̂(t; ξ) = Λ̃(t; ξ)

uniformly for 0 ≤ t ≤ τ with probability tending to one. Combining with (9) completes

the proof.

Define the random weighted bootstrapped empirical processes of cumulative hazard rate

and survival function by

L̂n(x) =
√
n
(
Λ̂(x; ξ)− Λ̂(x)

)
, Ŝn(x) =

√
n
(
Ŝ0(x; ξ)− Ŝ0(x)

)
.

The following lemma is a random weighted bootstrap analogy of Lemma B.3.
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Lemma C.2. Under the same Skorohod construction of Lemma A.1 but for (Un,Vn) =

(Ûn, V̂n),

sup
0≤t≤τ

∣∣∣L̂n(t) + Z(S(t))
∣∣∣ p−→ 0, sup

0≤t≤τ

∣∣∣Ŝn(t)− S0(x)Z(S(t))
∣∣∣ p−→ 0

for any finite τ with S(τ) > 0, where Z is a Gaussian process defined as in Theorem 2.1

in terms of the limit (B1, B2) of (Ûn, V̂n).

Proof. By Lemma C.1,

sup
0≤t≤τ

∣∣∣Ŝ0(x; ξ)− exp(−Λ̂(t; ξ))
∣∣∣ = Op((log n)

2n−1) = op(n
−1/2) and

sup
0≤t≤τ

∣∣∣Ŝ0(x)− exp(−Λ̂(t))
∣∣∣ = Op((log n)

2n−1) = op(n
−1/2),

where the second equation is for the special case ξ1 = . . . = ξn = 1. It follows that

sup
0≤t≤τ

∣∣∣Ŝn(t)−
√
n
(
exp(−Λ̂(t; ξ))− exp(−Λ̂(t))

)∣∣∣ p−→ 0.

This means that we only need to prove the convergence of L̂n, as the convergence of

Ŝn follows by the delta method. Recall from Appendix A that, with probability one,

(Xi, δi) = (Q(1 − Ui), δi) where Ui’s are i.i.d. uniform variables on [0, 1] and Q is the

generalized quantile function of Xi. Moreover, invoke the definition of Vi = ρ̃(Ui), where

ρ̃(x) = P(Ui < x, δi = 1) is a continuous improper distribution function with total mass

p1 := ρ̃(∞) = P(δi = 1) > 0. Using the same trick in Breslow and Crowley (1974) and

integrating by substitution, we can rewrite that

Λ̂(t; ξ) =

∫ 1

S(t)

[ρn(x; ξ)]
−1dρ̃n(x; ξ) and Λ̂(t) =

∫ 1

S(t)

[ρn(x)]
−1dρ̃n(x),

with probability one, where

ρn(x; ξ) := n−1

n∑
i=1

ξi1 [Ui < x] and ρ̃n(x; ξ) := n−1

n∑
i=1

ξi1 [Ui < x, δi = 1] .
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The functions ρn(·) and ρ̃n(·) are defined similarly as in section B.2 but with equal weights.

Observe that Ûn(x) =
√
n(ρn(x; ξ)−ρn(x)) and V̂n(ρ̃(x)) =

√
n(ρ̃n(x; ξ)−ρ̃n(x)). Following

the proof of Lemma 6.1 in Horváth and Yandell (1987) and integrating by substitution, we

decompose that

L̂n(t) = −Zn(S(t)) + A(1)(S(t)) + A(2)(S(t)) + A(3)(S(t)),

with

Zn(s) =

∫ 1

s

Ûn(x)x
−2dρ̃(x)−

∫ 1

s

x−1dV̂n(ρ̃(x)),

A(1)(s) =

∫ 1

s

Un(x)
(
x−2 − [ρn(x; ξ)ρn(x)]

−1
)
dρ̃n(x; ξ),

A(2)(s) =

∫ 1

s

(
[ρn(x)]

−1 − x−1
)
dV̂n(ρ̃(x)),

A(3)(s) =

∫ 1

s

Un(x)x
−2d(ρ̃(x)− ρ̃n(x; ξ)).

The leading term (i.e., the first term above) gives the desired limit by using Lemma A.1

with (Un,Vn) = (Ûn, V̂n) and under the Skorohod construction therein,

sup
S(τ)≤s≤1

|Zn(s)− Z(s)| p−→ 0.

It remains to show that supS(τ)≤s≤1 |A(i)(s)| = op(1) for all i = 1, 2, 3. By the uniform

consistency of ρn(x; ξ) and ρn(x) on [S(τ), 1] (implies by the functional CLT) and the

stochastic boundedness of Un(x),

sup
S(τ)≤s≤1

|A(1)(s)| ≤ sup
S(τ)≤x≤1

|Un(x)| · sup
S(τ)≤x≤1

|x−2 − [ρn(x; ξ)ρn(x)]
−1| · ρ̃n(1; ξ)

=Op(1) · op(1) ·Op(1) = op(1).

Let Ŵn(x) = V̂n(ρ̃(x)) − V̂n(ρ̃(1)), x ∈ [0, 1], such that Ŵn(1) = 0 by construction. By

Lemma A.1,

sup
S(τ)≤x≤1

∣∣∣Ŵn(x)−W2(x)
∣∣∣ p−→ 0 and W2(x) = B2(ρ̃(x))−B2(ρ̃(1)). (12)
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We can rewrite that

A(2)(s) =

∫ 1

s

(
[ρn(x)]

−1 − x−1
)
dŴn(x) =

∫ 1

s

[ρn(x)]
−1dŴn(x)−

∫ 1

s

x−1dŴn(x).

Integrating by parts and using (12), uniformly for all s ≥ S(τ) > 0, we have∫ 1

s

x−1dŴn(x) = −s−1Ŵn(s) +

∫ 1

s

Ŵn(x)x
−2dx = −s−1W2(s)−

∫ 1

s

W2(x)dx
−1 + op(1).

On the other hand,∫ 1

s

[ρn(x)]
−1dŴn(x) = −[ρn(s)]

−1Ŵn(s)−
∫ 1

s

Ŵn(x)d[ρn(x)]
−1.

Again, the first term above converges in probability to −s−1W2(s) uniformly for all s ≥

S(τ) > 0. It remains to verify the limit of the second term. Let U1,n ≥ . . . ≥ Un,n be the

order statistics of U1, . . . , Un. For every s, define N(s) =
∑n

i=1 1[Ui ≥ s]. Like above, we

have that ∫ 1

s

Ŵn(x)d[ρn(x)]
−1

=

N(s)∑
i=1

Ŵn(Ui,n)
(
[ρn(Ui,n)]

−1 − [ρn(Ui+1,n)]
−1
)

=

N(s)∑
i=1

W2(Ui,n)
(
U−1
i,n − U−1

i+1,n

)
+ op(1) =: Rn(s) + op(1)

uniformly for s ≥ S(τ). Note that the first term Rn(s) is an approximation of R(s) :=∫ 1

s
W2(x)dx

−1. Take any pτ ∈ (1− S(τ), 1). Note that N(s)/n ≤ N(S(τ))/n
p−→ 1− S(τ),

and thus N(s) ≤ npτ uniformly for s ≥ S(τ) with probability tending to one. Moreover,

by the uniform convergence of uniform variables (see, e.g., Theorem 0 in Wellner, 1978),

sup
1≤i≤npτ

|Ui,n − (1− i/n)| p−→ 0.

Using triangle inequality, uniformly for s ∈ [S(τ), 1]

sup
1≤i≤N(s)

|Ui+1,n − Ui,n| ≤ sup
1≤i≤npτ−1

|Ui+1,n − Ui,n|

≤ 1

n
+ 2 sup

1≤i≤npτ

|Ui,n − (1− i/n)| = op(1),
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where the first inequality holds with probability tending to one. As the sample path of W2

is uniformly continuous on [S(τ), 1], this implies that

Rn(s) =

N(s)∑
i=1

W2(1− i/n)
(
(1− i/n)−1 − (1− (i+ 1)/n)−1

)
+ op(1)

=
1

n

N(s)∑
i=1

W2(1− i/n)(1− i/n)−2 + op(1)

uniformly for s ∈ [S(τ), 1]. Now,

sup
S(τ)≤s≤1

|Rn(s)−R(s)| ≤
npτ∑
i=1

∫ 1−(i−1)/n

1−i/n

∣∣W2(x)x
−2 −W2(1− i/n)(1− i/n)−2

∣∣ dx
≤ 1

n

npτ∑
i=1

sup
1−i/n≤x,y≤1−(i−1)/n

∣∣W2(x)x
−2 −W2(y)y

−2
∣∣

≤pτ sup
|x−y|<1/n,x,y≥1−pτ

∣∣W2(x)x
−2 −W2(y)y

−2
∣∣ = op(1),

where the last step follows from the stochastic continuity ofW2 (due to that of the Brownian

bridge B2). This completes the proof of supS(τ)≤s≤1 |A(2)(s)| = op(1). Finally, decompose

that

A(3)(s) = −
∫ 1

s

(ρn(x)/x
2 − x−1)dV̂n(ρ̃(x))−

∫ 1

s

(ρn(x)/x
2 − x−1)dVn(ρ̃(x)).

Following similar arguments for A(2)(s), we can show that each term above is op(1) uni-

formly for s ∈ [S(τ), 1]. This completes the proof.

C.2 Existence of Boostrap MLE and Joint Convergence of Boos-

trapped Elements

Like in Appendix B, we have the following results:

(a) With probability tending to one, the log-likelihood function is well-defined, that is,

n∑
i=1

ξ
(b)
i li(θ|un) > −∞
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uniformly in the parameter space cl(Θε
n,b) with ε ∈ (0,min{γ0 +1/2, 1/2}), where cl(·)

denotes the set closure.

(b) Under the probability space of Lemma A.1,

1√
nα

(b)
n

n∑
i=1

(
ξ
(b)
i − 1

)
gi(θ

(n,b)
0 |un)

p−→ Υ̂,

where Υ̂ is defined the same way as Υ in the proof of Theorem 2.1 in terms of the

limiting Brownian bridges (B1, B2) of (Ûn, V̂n) instead of (Ūn, V̄n). Note that here all

random elements are only equal to the original ones in distributions.

(c) supθ∈cl(Θε
n,b)

∥∥∥ 1
nαn

∑n
i=1 ξ

(b)
i ∇gi(θ|un) + I(ᾱ)

∥∥∥ p−→ 0, where the unconditional Fisher in-

formation matrix I(ᾱ) is defined in equation (7) in the main document.

The proofs of these claims are completely analogous to that in Appendix B: Claim (a)

follows because the weights ξ
(b)
i > 0 does not change the finiteness of the likelihood function;

The proof of claim (b) is completely analogous, except replacing (Ūn, V̄n) with (Ûn, V̂n)

everywhere; The proof of claim (c) is also the same by applying Proposition 1 with the

random weights. We do not repeat the details.

For part (1) of Theorem 2.2, following the proof of part (1) of Theorem 2.1 in Appendix

B, it remains to check that

1
√
nαn

n∑
i=1

ξ
(b)
i gi

(
θ
(n,b)
0 |u(b)n

)
= Op(1),

by combining claim (b) here with claim (b) in Subsection B by taking un = u
(b)
n therein.

Next, we prove part (2) of the theorem. Invoke the probability space from Lemma A.1.

Let
√
nᾱ(θ̂ − θ0)

p−→ Z, where the limiting variable Z depends only on (Ūn, V̄n) and its

distribution is given in Theorem 2.1 or Corollaries 2.1–2.2. Following Csörgő and Mason

(1989), we only need to show that

√
nᾱ(θ̂(b) − θ̂)

p−→ Z̃ ∼ Z, (13)
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where Z̃ is a random variable only based on (Ûn, V̂n) that is independent of (Ūn, V̄n).

By part (1) of Theorem 2.1, in the same neighborhood Θε
n,b for the bootstrap threshold

u
(b)
n , with probability tending to 1 there exists a unweighted MLE θ̃

(b)
= (γ̃(b), log σ̃(b))⊤

solving
n∑

i=1

gi(θ̃
(b)
|u(b)n ) = 0.

Using claims (b) and (c) above and Taylor expansion,

1√
nα

(b)
n

n∑
i=1

ξ
(b)
i gi(θ

(n,b)
0 |u(b)n ) =

1√
nα

(b)
n

n∑
i=1

ξ
(b)
i gi(θ

(n,b)
0 |u(b)n )− 1√

nα
(b)
n

n∑
i=1

ξ
(b)
i gi(θ̂

(n,b)
|u(b)n )

=− (I(ᾱ) + op(1))

√
nα

(b)
n (θ

(n,b)
0 − θ̂

(n,b)
)

=− I(ᾱ)
√
nα

(b)
n (θ

(n,b)
0 − θ̂

(n,b)
) + op(1),

where in the last step, we recall that the beginning term in the first line is Op(1) from the

proof of part (1), and so is

√
nα

(b)
n (θ

(n,b)
0 − θ̂

(n,b)
) by the penultimate step. Note that we use

θ̂
(n,b)

to denote the random weighted maximum likelihood estimator for θ
(n,b)
0 . Similarly,

but using claims (b) and (c) from Subsection B,

1√
nα

(b)
n

n∑
i=1

gi(θ
(n,b)
0 |u(b)n ) =

1√
nα

(b)
n

n∑
i=1

gi(θ
(n,b)
0 |u(b)n )− 1√

nα
(b)
n

n∑
i=1

gi(θ̃
(b)
|u(b)n )

=− (I(ᾱ) + op(1))

√
nα

(b)
n (θ

(n,b)
0 − θ̃

(b)
)

=− I(ᾱ)
√
nα

(b)
n (θ

(n,b)
0 − θ̃

(b)
) + op(1).

Subtracting these expansions and inverting the information matrix I(ᾱ),

√
nᾱ(θ̂

(n,b)
− θ̃

(b)
)

p−→ I−1(ᾱ)Υ̂. (14)

Note that θ̂
(n,b)

is centered around θ̃
(b)

rather than θ̂ (the bootstraped estimator is centered

around the empirical estimator rather than the population value) in the previous equations.

Introduce the intermediate estimator θ̃(b) to be the estimator of θ0 using the threshold u
(b)
n
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instead of un. Applying the delta method with (14) and using Lemma C.2, we can show

that

√
nᾱ(θ̂(b) − θ̃(b))

p−→ Z̃ ∼ Z. (15)

Next, it is essential to observe that both θ̃(b) and θ̂ have the same probabilistic limit

centering around a common population value θ0 under the Skorohod construction in the

proof of Theorem 2.1. That is, under such Skorohod construction,

√
nᾱ(θ̃(b) − θ0) =

√
nᾱ(θ̂ − θ0) + op(1).

Canceling the common terms yields that

√
nᾱ(θ̃(b) − θ̂) = op(1).

Now combining this with (15) yields (13).
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