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This supplement contains three appendices. Appendix A presents some general limit
theories that will be used in the proofs of Theorem 2.1 in Appendix B and Theorem 2.2 in

Appendix C.

A General Limit Theory

In this section, we generalize the universal law of large numbers and universal central limit
theorem in He et al. (2022) for adaptive inference with a general threshold statistic under
censoring. We invoke the notion of stable function therein: a real-valued function ¢ on
D C R, is called stable if it is bounded in a neighborhood of 1, and there exists a finite

collection of k functions h; and f; such that



where f; is continuous at 1 and f;(1) = 0 for j = 1,... k. It is easy to verify that the
constant function, logarithm function, and power function are all stable. Furthermore,
for any two stable functions ¢ and 1 on a common domain D, ¢ + ¢, ¢ — 1, and ¢ - ¢
are all stable. This implies that, for example, any polynomial function is stable, and

¢(z) = log™(z) is stable for all integer m > 1.

Proposition 1 (Universal LLN under Censoring). Let {(U;,d;) : i = 1,...,n} be inde-
pendent copies of some bi-variate random vector (U,d) € (0,1) x {0,1}, where U is not
necessarily a uniform variable and may be dependent of 6. Suppose that we generate i.i.d.
random weights {&1, ..., &,} from a distribution with mean one and finite first absolute mo-
ment, possibly degenerate with & = ... = &, = 1, independent of {(U;,d;) : 1 < i < n}.
Consider an arbitrary measurable statistic o, € (0,1) such that a,, & a € (0,1), and
suppose that the marginal distribution of U is Lipschitz continuous in a neighborhood of a.

For any stable function ¢ on (0,1] satisfying the decomposition (1) and

1
EE 01U < a]|h;(U < a)|] < oo, forallj=1,... k,

we have that

1 n U, B 1 n ) U
oo, ;Eiéﬂl[w < oo <Oé_n> =a ;fﬁﬂl[Ui < alo <E) + 0,(1)

:éE [5]1[1] < al (g)} +0p(1).

if provided the existence of the limit é]E [5]1 U < a]o (%)] Note that the results remain

true if we replace 6 with 1 — & everywhere.

Proof. We only prove the first equation, as the second one follows directly from the law of



large numbers. It suffices to show that

1 U; 1 o (U

n

:% iz:;giéi]l[Ui < a,] (¢ (%) —¢ (%))
n % Zn:giéi (LU < an] = 1[U; < a]) ¢ <%> = Ti+ Tz = 0y(1).

First, we show that 77 = 0,(1). Recalling the decomposition (1) for stable function ¢

and using triangle inequality, there exists functions h; and f; such that

k n
1 _ _ _
T <) py=s > 16160 < @) |hy (Us/@)] |f5(a) o)
=1 =1
Observe that for every j, fi(a/an) = f;(1) + 0,(1) = 0,(1), and by assumption

E{%Zl&ln(m<a>|hj(Ui/a)l} El¢;| - ~E[5:1[U; < alh;(U; < a)[] = O(1).

Because £ is finite, together with Markov inequality,

k
Tr =7 0,(1) - 0,(1) = 0,(1).
j=1
Next, we show that T = 0,(1). We only need to consider those U;’s lying between «,, and

@, i.e. those U;/«, lying between one and &/«,. For any small ¢ > 0 and large M > 0,

with probability tending to 1, |a,/a — 1| < €2/M and then

1 n
13| SﬁZ'fi@qui —al<a?/M)- sup |(z)]
=1

lz—1|<e2/M

< S IV~ al < ac?/M) - sup [(a)].
=1

le—1]<e2/M

But by assumption, for some Lipschitz constant K,

2B {Ja/1(1U; - ] < a?/M))
el

Q

P(U; <a+ae’ /M) —P(U; < a—ae’/M)) < 2E|§|K/Me.



Combining with Markov inequality yields that, for all large n
P(|Ty| > ¢) <P (|2 > ¢ | |an/a — 1| < /M) + P (Jan/a — 1| > £ /M)
lz—1]<e?/M

<2P (i- STIGI(U - al < at/M) - sup [g(a)] > ) +ef2
no i—1

<2 B {J6I1(U; — al < ac’/M)} - sup |6(x)| +¢/2

lz—1|<e

12E|& | K
<2- 3 g2 sup |p(z)| +¢e/2 <e,

€ lz—1|<e
by taking a sufficiently large M not depending on . It follows that T = 0,(1) as € > 0

can be arbitrarily small. O

Before showing the universal CLT under censoring, we first introduce some important
notations. With probability 1, (X;,d;) = (Q(1 — U;),d;) where U;’s are i.i.d. uniform
variables on [0,1] and @ is the generalized quantile function of X;. Define V; = p(U;),
where p(x) = P(U; < z,6; = 1) is a continuous improper distribution function with total

mass p; := p(o0o) = P(6; = 1) > 0. Consider the empirical processes

- 1

Up(z) =—= > (A[U;<z]—x), 0<z <1,
v

_ 1 <&

Similarly, define the random weighted empirical processes

A~

T, (2) ::% Y6 - D <] -a), 0w <,

A~

1 n
Volz) =—=>» (&—-1DAVi<z,0;=1—2), 0 <z <p.
The following lemma follows from the Chibisov-O’Reilly theorems.

Lemma A.1 (Chibisov-O’Reilly Theorem). Let &1, &, ... be nondegenerate random weights

with mean one taken from a sequence of i.i.d. random variables with subexponential distri-
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bution. For any n € (0,1/2), under Skorokhod construction,

sup ; =N 0, sup - — 0,
2€[0,1] x z€[0,p1] X

and similarly

U,(x \Y
sup TN 0, sup — 0,
z€[0,1] x z€[0,p1] "

where (By, By) and (El, Eg) are independent copies of (By, Bs), a bivariate Gaussian pro-
cess whose margins By, By are Brownian bridges and the cross-covariance structure is given

by
cov(By(s), Ba(t)) = min{p(s),t} — st.

Proof. Following the proof of Lemma D.2 in He et al. (2022), it suffices to prove the lemma

A~

substantiating (@n,@n) with the approximate processes @n,yn) given by

n

1

@n(x) ::—NZEZ-(]I[UZ» <z]—x), 0<z <1,
\/ Z?:l 512 i=1
Vo() =S E(AVi< 2,6, = 1] —2), 0< 5 <y,
D1 & =

where g =& — %Z?:l &. This is because they have shown that

sup = (1+o0,(1)) sup
z€[0,1] i1 ( 1) €[0,1] ¢

and similar arguments hold for 17n

Consider the combined weighted process (U,,V,,,U,,V, ). By the Lebesgue dominated
theorem, it suffices to consider a conditional statement given the sample path of random
weights & = &;(w), or equivalently le = é(w), for any w € Q from a set 2 with probability

measure 1. This is because the weights are independent of the observations, and the joint

limiting distribution does not depend on the weights. In particular, for sub-exponential

5



weights &;, we can easily choose such a set via the Borel-Cantelli lemma satisfying the

asymptotic negligibility conditions required for the following:

(i) Finite-dimensional convergence holds by applying the Lindeberg central limit theorem

with the boundedness of the indicator function.

(ii) The marginal tightness of @n and i/n follows from Theorem 1, Chapter 3, in Shorack

and Wellner (1986).

Moreover, the marginal tightness of U, and V,, are available from Shorack and Wellner
(1982), and these processes do not depend on the random weights. Hence, one can conclude

that, conditional on the sample path of random weights from a set with probability 1,

(ﬁnavn’@rwi/n) i) (-317327@17-/8\2)
in the product of generalized Skorohod space on [0, 1] x [0,p1] x [0,1] x [0,p1] of left-

. . w
continuous functions, where ‘—’ denotes weak convergence. Therefore, under Skorohod

construction,

— ~

(IU'HJ Vna Mn?ﬁn) & (Bla BQ? Ela EQ)
where the processes on the left are equal to the original ones only in distribution. Note
that we can extend the probability space to include the random weights. The rest follows

by applying the Chibisov-O’Reilly Theorem to each marginal process in this probability

space (see Chibisov, 1964, O’Reilly, 1974 and Shorack and Wellner, 1982). m

Now, we present our universal CLT under censoring.

Proposition 2 (Universal CLT under Censoring). Suppose that the threshold statistic u,
satisfies Assumption 2.2, where we define adaptive exceeding probability o, = So(uy,) and its
limit & € (0,1). Consider a stable function ¢ defined in (1) on an open domain D C (0, 00)

including (0, 1] such that



(1) ¢ and its base functions hj, 1 < j < k, all have Lebesgue integrable derivatives on

every closed sub-interval of D; note that each sub-interval is bounded away from zero.

(ii) For some n € (0,1/2), hmt’7|¢ )| =0, fo "¢ (t)|dt < oo and fo 7R (t)]dt < oo for

all1 <j<k.
(111) The derivatives ¢' and b} are continuous in a neighborhood of one.

Let (U,,V,) denote one of the multivariate processes, either (U,,V,,) or (@n,@n) Cor-
respondingly, define the limiting processes (By, By) to be (B, Bs) or (El, §2), respectively

from Lemma A.1. Under the same probability space of Lemma A.1,
1
/ AW, i(0nt) = H(WE() = [ Wilaidott) +0,(1), i = 1.2
where W, 1(t) = Un(S(Qo(1—1))), Was(t) = Va(S(Qo(1—1))), Wi(t) = Bi(S(Qo(1—1))),
and Wy (t) = Bo(S(Qo(1 —1))).
Proof. First, we show that limjo ¢(6)W,, ;(a,t) = limyo t"¢(t) - limgyo t "W, ;(ant) = 0,(1).

We only need to show limy ot "W, ;(a,t) = O,(1). By Lemma A.1

— lim "W,
1&1)175 TW,,.i(at) ltlglt Wi(ant) + 0p(1).

Consider the case for i = 1. By O’Reilly (1974) theorem, we also have that, with probability

1, uniformly for ¢ € (0, 1]

. [ BuS(@o(1 — au)] (S(Qo(1 — aut)) "
et =| T e )
Bi(z) ant\” Bi(z)|
<am ) () = 2w [ =0
where we use the fact that 0 < S(Qo(1 — at)) < S(Qo(1 — at)) < at all t € (0,1) for the

first inequality. The case for ¢ = 2 is similar and omitted.



The integration by parts formula then gives that

/0 O(E) AW, (ant) =(1)W,0 i) — 0p(1) — / W, () do(2)

=p(1)W,, ;(ay,) — 0,(1) — /Oan W,..i(t)do(t/an,). (2)

Using the uniform convergence in Lemma A.1 and stochastic continuity of Brownian bridge

(and the continuity assumption of S and S around the neighborhood of 4 = Qo(1 — at)),
Woi(am) = Wilam) + 0p(1) = Wi@) + 0p(1). (3)

Furthermore, using expansion (1) for stable function ¢,

o(t/cn) = B(t/@) =Y h(t/a) filan/a).

Jj=1

It follows that

[ astwasttian = [ weasesa)
+ Z filam /@) /0 an W,,.i(t)dh;(t/a).

The leading term (i.e., first term above) equals to

an/a

W, i(at)do(t) = /O W, (@)l + [ i @nds)

Qn /&

0

— /0 W,,;(at)do(t) + o,(1),

where we use the stochastic continuity of W, ;(at) from Lemma A.1 and the boundedness

of ¢’ around one in the last step. Similarly, the remainder terms

an /@

/Oan W,,..(t)dh;(t/a) = /01 W,,.i(at)dh;(t) + 1 W,.i(at)dh;(t)
= /1 Wn,z(@t)dhj (t) —+ Op(l)

- /1 ("W, ;(at)) TR (1)dt + 0,(1) = O,(1),



where in the last step we invoke from above that sup,e gy [t7"W,,i(at)| = O,(1) and the
assumption that fol | (t)|dt < oo. But fi(an/a) = f;j(1) + 0,(1) = 0,(1) by continuous

mapping theorem for every j. Collecting the asymptotic approximations above gives that

| stodstt/an) = [ Wadat)asn + o,

Recall that 0 < S(Qo(1 — at)) < S(Qo(1 — at)) < at all t € (0,1). Applying Lemma A 1,

we can replace W,, ; with their W; in the last line. Specifically, when ¢ =1,
' g [ Ua(S(Qo(1—at)) (S(Qo(1—at)\" ..,

/0 W1 (at)h(t)dt = /0 51001 —a)) ( — ) (at)"h;(t)dt.

' Bi(S(Qo(1 — at))) <S(Q0<1 —at))
o SMQo(1— at)) at

_/1 Wi (at ) (t)dt + op(1),

)n ()", (£)dt + 0,(1)

where the second step follows from Lemma A.1 and the fact that

/01 (S(Qo(l - @t)))n (at)| B, (t)]dt < /Ol(at)ﬂ|h;.(t)|dt & /01 P (8) dt < o,

at

The case for ¢ = 2 is completely analogous, and we omit the details. Therefore, we have

the final approximation that

/0 W (0)dé(t ) = / Wi(at)do(t) + o,(1). (4)

Combining equations (2)—(4) completes the proof. O

B Proof of Theorem 2.1

Let 8 = (v,logo)" and ©F = {6 € (—1/2,00) X R : HO—B[()") < n~Y2*2} where

Hé”) = (Y0,logo,,)" denotes the adaptive true value. For i-th observation, denote its

exceedance likelihood by [;(0|u,) = 1[X; > u,|¢;(6|u,) and define the sample score vector



for 6 by
9i(0|u,) = Vol (Blu,) = 1[X; > u,|Veli(0|u,),
where, for X; > u,,
Voli(0|uy,) =: 0;5(0|X; —up) + (1 — 0;)w(0|X; — uy).

The function s(0|z) = Vglog(—G'(z|v,0)) is the lifetime score function for generalized
Pareto distributions with respect to 6, and the function w(0@|z) = Vglog(G(z|v,0)) is
the censoring score function. For presentation convenience, whenever needed, all the limit
elements are defined on the same probability space via the Skorohod construction in Lemma
A.1. They are only equal in distribution to the original elements, and the joint convergence
in probability in this probability space implies the joint weak convergence in the original

space.

B.1 Adaptive Maximum Likelihood Estimation

We establish the following fundamental results for our maximum likelihood estimation

adaptive to a universal threshold statistic u,. Let ‘%’ denote convergence in probability.

(a) With probability tending to 1, the log-likelihood function is well-defined, that is,

=1

uniformly in the parameter space cl(©%) with € € (0, min{yo + 1/2,1/2}), where cl(-)

denotes the set closure.

(b) Under the Skorohod construction of Lemma A.1 for (U,,V,),

nOén Z gl |un =7

i=1
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where T is defined the same way in Theorem 2.1 through the Brownian bridges (B, Bs).

Note that here the random elements are only equal to the original ones in distributions.

(c) supgeaos) || ma 2oiey Vai(Blun) + Z(a H %, 0, where the unconditional Fisher infor-

nom,

mation matrix Z(&) is defined in (7) in the main document.

Claim (a) is straightforward for the case vy > 0 where {1 —l—v@ : X —un} is
bounded below by a strictly positive number, say, 1/2 with probability tending to one.

When vy < 0, using the fact that X,,., > T,,.,, we can show that

Xn:n_un Tn:n_un
Ly = > Ly

>0

uniformly for ©; with probability tending to 1, where the proof of the last step is available
in Section E.2 of He et al. (2022).
Next, we prove claim (b). Recall the score functions of £(0|x,¢) are given by
Vol(0|z,0) =0s(0|x) + (1 — 0)w(0|z)
=—0(w(0) — s(0|x)) + w(@|z) =: —0h(B]x) + w(O|x),

where h(0|z) = Vglog A\(@|z). The next lemma follows from the integration by parts

formula.

Lemma B.1. Write in short that h;(x) = hi(y,logo,,|x) where o, = So(uy,). The

adaptive score equations are correct, that is, with probability 1

- / Wz — u,)dS(z) + / w(z —u,)dS(z) = 0, (5)
where S(z) = P(X > x,6 = 1) is a possibly improper censored survival function.
Proof. Observe that S(z) = P(X > 2,6 = 1) = — [*°(1 — H)dS, and S(z) = Sy(z)(1 —
H(x)). Substituting Sp(x) = a,Go(z — u,) with Go(x) = G(z|y,0a, ) for © > u, > ug

11



yields that
S(z) = a,Go(x — uy,)(1 — H(x))

and

§'(x) = an(1 = H(x))Gy(x — un) = =S(@)ho(x = up),

where \o(z) 1= A(8”|x). Tt follows that
/ h(z — u,)dS(z) = / Vo0 |2)S(z)dx

— [ Swlo e~ w)S@ids = [ w6~ u)ds(a)

Un

where the last step follows from the integration by parts formula. O

We have the following formulas by direct calculations. The first part for lifetime score
functions is due to Fact 2 in He et al. (2022), and the other part for censoring score functions

follows from similar calculations.
Fact 1. For all a,at € (0, ),

t t
—Vos(70, 108 04| Qo(1 — at) — Qo(1 — a)) = Praclt) Srzm()| o, (1)

¢1,2Wo (t) ¢272N0 (t)

and

t t
—Vow(v0, 108 04| Qo(1 — at) — Qo(1 — a)) = Yram(®) ran(®)| v, (1),

wl?ﬁo (t) 7/)2,2770 (t)

where

2 3+ 14
P1100(t) = 3 <—% logt — 270 + (90 +2)t7° — —5 7015270) 7

0
1 1+
G1200(1) = =5 (1= (24700 + (1+70)270) , Gaa(t) = —22 (870 — 12m)
7 Yo
2 3 1 )
wLL’Yo(t) - ’7_3 <—’Yg logt — 5 + 2t — ét Wo) 7
! )2 1 70 270
Y1,200(t) = 7_3(1 —1)%, Wap(t) = o (0 — ¢2)
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being well defined for v = 0 by continuity as

2
d110(t) = —3 (log 75)3 — (logt)?, ¢120(t) = (log 75)2 +logt, ¢a20(t) = —logt,

'le,l,()(t) = —; (log t)g, ¢172,0(t) = (lOg t)Z, ¢27270(t) = — IOg t.

Observe that

S(x)=P(X; >z,0, =1)=P(U; < S(x),0; =1) =P(V; < p(S(x)),0; = 1) = p(S(x)).

With probability 1, using Lemma B.1 we can rewrite that

1 n
n Zgi(%; log 04, | Xi — un, 9)
i=1

-/ °° be = )T (5(0)) - [ OO w(e = 1) dTo(S(2))
- /01 h(Qo(1 — ant) — Qo1 — )V, (S(Qo(1 — ant)))
[ 0@t~ ant) = Qo1 — ) AT(S(Q1 — ) =+
Recall from Proposition 2 that Wi, 1 (ant) = Un(S(Qo(1—ant))) and W, a(ant) = T (S(Qo(1—
ant))). Also recall the expansion of the high quantile function Qg for 0 < ant < ay < ag

given by

Zon (t—’YO - 1) Y0 7& 07

Yo

QO(]- - O-/nt> - QO(l - an) =
O, log(1/t) 70 =0,

where ag = Sp(ug). Therefore, using Fact 1, we can rewrite that

J = —/0‘ h(@o(l — O_ént) - Qo(l - an))deQ(ant) = _/0 ¢1,'Yo(t)dwn,2(ant)

and

Jo = /0 w(Qo(1 — @nt) — Qo(l — @,))dW,, 1 (ant) = /0 B30 ()W 1 (),
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where

b = %o (L=t and by (t) = % (=0 logt + 17 — 1)
e Yo (1—1)
When vy = 0, we interpret ¢, and ¢; 5, as their continuous extension given by ¢;(t) =
[—1logt, 1]7 and ¢o(t) = [5(logt)?, —logt]”, respectively. The rest follows from Proposi-
tion 2. Note that we rewrite the limit using v, (t) = ¢/, (t) for i = 1,2.

It remains to prove claim (c). The following formula is due to Gertsbakh (1995).

Fact 2. For any fived u > ug with o = Sp(u) > 0,
1
——E[Vygi(y,logo|u)|C; —u =z > 0] = Z(y,log o|z).
«

Moreover, we have the following formulas for the Hessian matrix. The first part for life-
time score functions s(v, log o|r) = (s1(7,log o|x), so(7y,log o|x)) T is due to Fact 1 in He et
al. (2022), and the other part for censoring score w(, log o|z) = (wy (v, log o|x), wa(7,log olz))

can be obtained similarly by straightforward calculations.

Fact 3. Given any threshold statistic u, the negative Hessian matriz is given by

—ZV% v, log o|u) = 2(5 Vs(vy,logo|T; — u)

1
- 1—6 ] o
+na E ( 3;)Vw(~,logo|C; — u),

i=1

where

_ 0s1(y,logofz) :33 (log (1+7z) _y-zfo 243 z2/o? >
Y

" Gor T ()’
Osi(v.logolr)  Osy(x;vlogo,u)  2?/o® —z/o
" Ologe B R
ostlogoln) ) wje
Ologo (1+7_§)2>

14



_Owi(y,logolz) 2 <log <1 +7£) vz _fy; 22 /o > |
o

0y s L+92 2 (1442)°
owi(y,logolz)  Owy(x;v,logo,u) 22 /o?
~ dlogo T 0y B (1+7§)2’
Owy(v,logolz)  z/o
~ dlogo _(1+7.§)2'

Note that the above derivatives are well defined for v =0 by continuity.

To control the Hessian matrix in the entire local parameter space ©:, we use the following

lemma. Its proof is the same as that of Lemma E.3 in He et al. (2022) and omitted.
Lemma B.2. Uniformly for (v,logo)" € O3 with e € (0,min{ + 3, 3}),
IVes(v,log o|Qo(1 — ant) — un) — Ves(vo,10g 04, |Qo(1 — amt) — un)|| = 0p(1) - 4(t)
and
IVew(y,log o|Qo(1 — ant) — un) — Vow(y0,108 00, [Qo(1 — ant) — un)|| = 0p(1) - (1),

where ¢(t) = 320 (=logt)! + 10 4 20, ¢ € (0,1) and the o,(1)-terms are uniform for

With a slight abuse of notation, define U; = So(T;) and V; = Sy(C;), where Sy denotes the

(uncensored) survival distribution of 7". Combining Facts 1 and 3, we have

1 <« "
—— 3" Va(65”)
i=1

noy, —
noy, — Y0 ap — Y0

Observe that



Together with integration by parts formula, we have, for a € (—1,00) and « € (0, 1)
0 S/ z4dP(V; < x,6; = 1)
0

<ot 4+ {|a] + 1}/ P(V; <,6 = 1)a" tdo
0

« a+1
<o + {la] + 1}/ zdr = "t 4 {|a] + 1} ¢ <. (6)
0 a+1

Similarly, we can show that for 1 <a < 3 and « € (0,1)

0< / (—logx)*dP(V; < x,0; = 1) < (—loga)®a+ (|a| + 1)/ (= logz)* tdx < oo. (7)
0 0

Applying Proposition 1 entry-by-entry twice using (6), (7), and the assumption 2y, > —1

to {(U;,0;) : 1 <i<n}and {(V;;1—=46;):1<i<n}, respectively, we have

where 0y = (79, logos)" and the last equation follows from Fact 2 and the law of iterated
expectations. Furthermore, because U;’s are i.i.d. uniform variables, we have
in So(X;) = mi U, V;} > min U; > 1
215, So(X0) = jpip max{lUs Vi) > polp Ui 2 5,

with probability tending to 1. Applying Lemma B.2 and the stable function ¢(¢) > 0

therein, we have

1 — ] —
su Vi (0) — Vg (6"
S nan; 9:(0) nan; 9:(65")
:Op(l)'

n;n ;n;(WUi < aylo (O%) + 0,(1) - n;n zn:u —0)1[Vi < a]o (K)
50- éE {mm < ale (%)} +0- éE {(1 — &)1V, < alo (K)] =

where we apply Proposition 1 twice to {(U;, ;) : 1 <i <n}and {(V;,1—10;):1<i<n},

respectively, in the last line by invoking (6) and (7) again.
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B.2 Existence of MLE and Joint Convergence

We first prove the existence of the maximum likelihood estimator, that is, part (1) of
Theorem 2.1. It follows from claim (a) in the last section that, with probability tending
to 1, the likelihood function Y 1 | [;(0]uy,) is well-defined and continuous in c1(©%). Under
such an event, applying the Weierstrass theorem yields the existence of a maximum point

6, € cl(©2). However, uniformly for all boundary points 6 = 0(()") +n V2w € cl(69)\ O,

with ||w| = 1, it follows from Taylor expansion in conjunction with claims (b) and (c) that
Zl (O|uy,)
nom =
_ C1geel _
- Zz ) + a2 L Zgz 05" [ — 0 L (Z(8) + 0,(1)) w
- 1
l; O(n . . 1426y _ =142~ T7 (A
= SO ) () ) < G T

As Z(@) is positive definite, with probability tending to 1, for these boundary points, we

have

n n

1 1
o 2 llBlun) < o= 3 14(65" un) _mnz altn),

i=1 i=1 i=1

implying that the estimator 6., is in the interior of cl(e:).
Next, we prove part (2) of Theorem 2.1. Using Taylor expansion, for some 0 ¢ O}

between 6 and 05?)

—1
n . 1 n )

Using claims (b) and (c) in the last section and replacing «,, with limit & yields that, under

v (6-00) = 1

the same Skorohod construction of Lemma A.1,
Vn (0 0(0)) Vna (7 — v, loga — log U%) 5 I(a) i
That is, using the delta method,

Vna (? — 0, Ui - 1)T = Z(a)"'T. (8)

Qn
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It remains to derive the limit of the product-limit process under the same Skorohod
construction. Define the empirical process of cumulative hazard and the product-limit

process by
Lo(z) = v (K(@ . A0<x)) and  S,(z) = v <§0(9c) - So($)>

The following lemma first appears in Breslow and Crowley (1974), Theorems 4 and 5.
See Burke, Csorgd, and Horvéath (1981), Theorem 4.2, for comments on the proofs in the
aforementioned paper and corrections in the context of strong approximation. Recall the
construction (X;, ;) = (Q(1 —U;),9;) and V; = p(U;) from Appendix A. The key idea is to

exploit the relation
1

~log Solt) = Aoft) = / ).

and to approximate — log §0(t) by the empirical cumulative hazard rate /A\(t) = v« W}X]
1= ] K

which can be rewritten as

R(t) = / ) ),

Here, (p,(x), pn(z)) are the empirical version of (x, p(z)) given by

pu(z) :==n"" Z 1[U; < ]

pn(z) :=n"" Z 1[U; <z, =1].
i=1
Observe that U, = /n(p,(r) — ) and V,,(p(x)) = /n(p,(z) — p(x)). Our proof is com-
pletely analogous to that of its bootstrap version in the next section, namely Lemma C.2

below, and therefore omitted. Note that the everywhere-continuity assumption of the cen-

soring time C' is not necessary as in Horvath and Yandell (1987); see also Horvéth (1980).
Lemma B.3. Under the Skorohod construction of Lemma A.1 for (U,,V,) = (U,,V,),

sup |Ly(z) + Z(S(x))] 20 and sup Su(x) = So(2)Z(S(x))] %0,

0<z<t 0<z<rt
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where T > 0 is any finite time point with S(7) > 0 and Z is the Gaussian process defined

in Theorem 2.1 via the limit (B, By) of (U,,V,).

Finally, combining (8) and Lemma B.3 completes the proof of Part (b) of Theorem 2.1.

C Proof of Theorem 2.2

C.1 Weak Convergence of Random Weighted Product-Limit Pro-
cess

For presentation convenience, we omit the superscript and just write the random weights
€= (£,...,&)" in short of £ = ( %b), - ,&(Lb))T. Define the random weighted estimator

of the cumulative hazard rate by

0
ZZ

X, <t X;>X; 5.7

Note that the denominator ) X, >t & > &nn > 0 when X, ,, > t, which occurs with probabil-
ity tending to 1 uniformly for ¢ € [0, 7]. The following lemma bounds the difference between

the estimators — log S (t;€) and /A\(t; €) of the cumulative hazard rate stochastically.

Lemma C.1. Let 7 be any finite value such that S(7) > 0. For i.i.d. random weights &;’s

from a subexponential distribution with mean one (possibly degenerate),

sup |— log §g(t &) — t (t; ) ‘ = logn) n_l).
0<t<r

Proof. Let N(t) = > 71_, 1[X; > t] and Z(i) = } . ;&jn. Using the condition S(7) > 0,
with probability tending to 1, 7 < X,,, and thus Z(¢) > 0 uniformly for ¢ such that
Xi.n < 7. First, define an approximation of K(t; €) given by
e 51 nfzn
At;6) = = e
Xzzn:st :(Z) + 57;,71
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and we shall show that

sup |~ log So(t:€) — At:€)| = Oy (logn)*n™"). (9)

0<t<r

Note the following elementary inequality:
0<—logl—(z+D Y-+ t<(z(z+1) <22 2>0.

Substituting z = Z(¢) /&, gives that

éin )5HL ingin
0 < —loglIly. l1— — —
o8 XW( Z(0) + &im 2 E() + &im

Xin<t

& &
= 5; _
XZ; { log < =(i) + £n) =(i) + gn}

<% ) < (pe) > @0 (me) > G0 o

=1 i=1

Next, we use the well-known bound of the sample maximum for sub-exponential distribu-
tion:

max & = O,(logn), (11)

1<i<n
which can be shown using the Bonferroni method and the sub-exponential tail probability
bound. Moreover, it is elementary to show that N(7)/(nS(7)) £ 1 using the Hoeffding’s

inequality, and therefore with probability tending to one

n—%nS(T)
Z EG) < Y, EuG)

But by Bernstein’s inequality, there exists some absolute constant M > 0 and sub-exponential

norm K > 0 such that for small ¢ > 0,

n—%nS(T) :<J) n—%NS(T) (n B ]>t2
Pl|l—=-1|>t) < 2(n —j —M-———
> (|E2 1] 1) < > a0 e (- E)
n—1 ]t2
j=4nS(7)
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as the lower bound $nS(7) — oo. It follows from the Bonferroni method that

n— N(T) nfénS(T)

Op| D (=53] =0,(1/(nS(r)) = Op(n).

j=1 j=1

Combining this with (10) and (11) yields (9). Next, observe that

<A(t:6) — A(t:¢)
- i nfz n sz fj n ZXj:n>Xi:n 5]%)
X%;t (ZX >Xiin fj) (iji ’fj,n>

-2

Z & Z 0:&i Z &

X;>T X; <t X;=X;
-2
< (Z &1[X; > T]) ZZ (0:6&1[X; =Ti)) -

The first term ). &1[X; > 7] > &, ,1[ X, > 7] > 0 is positive with probability tending

IA

to one. Furthermore, because P(7; = T;) = 0 by the continuity of S,
P(X; =T;,6; = 1) = P(C; = T}, 6, = 1) = 0,

where we also use the independence between C; and (7}, ;) in the last step. This implies
that >, > (0:£&;1[X; = Ti]) = 0 with probability one. It follows that At €) = A(t;€)
uniformly for 0 < ¢ < 7 with probability tending to one. Combining with (9) completes

the proof. O]

Define the random weighted bootstrapped empirical processes of cumulative hazard rate

and survival function by
Lo(x) = v (Mx:©) = R(@)) . Sule) = vV (So(a:€) = So(a))

The following lemma is a random weighted bootstrap analogy of Lemma B.3.
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Lemma C.2. Under the same Skorohod construction of Lemma A.1 but for (U,,V,) =

(U, V,),

sup |L,.(t) + Z(S(t))| 20, sup gn(t) — So(x)Z(S(t))| &0

0<t<r 0<i<r

for any finite T with S(t) > 0, where Z is a Gaussian process defined as in Theorem 2.1

in terms of the limit (By, By) of (U, V,).

Proof. By Lemma C.1,

Sol:€) = exp(=A(1:))| = Op((logn)*n ") = 0,(n /%) and

sup
0<t<r

ostor Sol@) - eXp(_/A\(t))‘ = Op((logn)*n™") = 0,(n™"/?),

where the second equation is for the special case & = ... =&, = 1. It follows that

2o,

S(t) = vt (exp(=R(:€)) — exp(~A(1)))

sup
0<t<r

This means that we only need to prove the convergence of f[:m as the convergence of
gn follows by the delta method. Recall from Appendix A that, with probability one,
(Xi,0;) = (Q(1 — U;),6;) where Uy’s are ii.d. uniform variables on [0,1] and @ is the
generalized quantile function of X;. Moreover, invoke the definition of V; = p(U;), where
p(x) = P(U; < x,0; = 1) is a continuous improper distribution function with total mass

1) > 0. Using the same trick in Breslow and Crowley (1974) and

=
[
=l
I
=
Sg
I

integrating by substitution, we can rewrite that

1

Rt ¢) = / €] 7€) and Agp) = / ),

with probability one, where
pu(;€) :=n"" Z&]l [U; < 2] and p,(z;€) :=n"" Zgiﬂ U; < x,6; =1].
i=1 —
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The functions p,(-) and p,(-) are defined similarly as in section B.2 but with equal weights.
Observe that Uy, (z) = /(pn(2: €)= pa(z)) and V,(5(z)) = /i(pn(x: €)= pn(z)). Following
the proof of Lemma 6.1 in Horvath and Yandell (1987) and integrating by substitution, we

decompose that

with

The leading term (i.e., the first term above) gives the desired limit by using Lemma A.1

with (U,,V,) = ([[Ajn, i\/n) and under the Skorohod construction therein,

sup  |Zn(s) — Z(s)| & 0.

S(m)<s<1
It remains to show that supg( ;)<< |AD(s)| = 0,(1) for all i = 1,2,3. By the uniform
consistency of p,(z;&) and p,(x) on [S(7),1] (implies by the functional CLT) and the

stochastic boundedness of U, (z),

sup [AW(s)[ < sup |Un()]- sup [&7 = [pn(@; )pn(x)] | - pn(1;€)
S(r)<s<1 S(r)<z<1 S(r)<z<1

=0p(1) - 0p(1) - Op(1) = 0p(1).

Let Wn(x) Vo(p(2)) = Va(5(1)), = € [0,1], such that Wn(l) = 0 by construction. By

Lemma A.1,

sup  |W,(z) — Wal(z)| 2 0 and Wa(z) = Ba(p(z)) — Ba(p(1)). (12)

S(r)<z<L1
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We can rewrite that

—~

AP (s) = / ([on@) - o) W (2) = / ) 1) — / W (0)

Integrating by parts and using (12), uniformly for all s > S(7) > 0, we have
1 - - 1 1
/ 2 W, (7) = —sTW,(s) —I—/ W, (2)r 2de = —s "Wy(s) — / Wy(x)dz™" + 0,(1).

On the other hand,

1 1
[ @ 0) = [ o)) To) — [ W)

Again, the first term above converges in probability to —s Wy (s) uniformly for all s >

S(7) > 0. It remains to verify the limit of the second term. Let Uy, > ... > U,, be the

order statistics of Uy, ..., U,. For every s, define N(s) =Y " | 1[U; > s]. Like above, we

have that

N(s)
= Z W, (Uin) ([pN(Ui,n)]_l - [pn(Ui-i-Ln)]_l)

N(s
— Z(:) Wo(Uin) (Ui, — Uiiin) + 0p(1) =: Ry(s) + 0p(1)
i=1
uniformly for s > S(7). Note that the first term R,(s) is an approximation of R(s) :=
fsl Wy(z)dz~'. Take any p, € (1 — S(7),1). Note that N(s)/n < N(S(1))/n 2 1 — S(7),
and thus N(s) < np, uniformly for s > S(7) with probability tending to one. Moreover,

by the uniform convergence of uniform variables (see, e.g., Theorem 0 in Wellner, 1978),

sup |Usn — (1 —i/n)| 2 0.

1<i<np,

Using triangle inequality, uniformly for s € [S(7), 1]

sup  |Uip1n —Uinl < sup  |Uip1n — Uinl
1<i<N(s) 1<i<np,—1

1
<—+4+2 sup |Uin— (1 —1i/n)] =o0,(1),
n 1<i<np,



where the first inequality holds with probability tending to one. As the sample path of W,

is uniformly continuous on [S(7), 1], this implies that

N(s)
s) = Z Wa(l—i/n) (1 —i/n)™' = (1= (i+1)/n)™") + 0,(1)
12 N(s)

:_ZW2 1—i/n)(1—1i/n)"%+o0,(1)

uniformly for s € [S(7), 1]. Now,

npr

FULC !<Z/ . \Wg(x)x* — Wl —ifn)(1 —i/n)"2| du
— ZT sup |W2(x):c_2 — Wg(y)y_z‘

=1 1—i/n<zy<1-(i-1)/n

<p. sup [Wa(z)a ™2 = Wa(y)y 2| = op(1),

lz—y|<1/nzy>1-pr
where the last step follows from the stochastic continuity of W5 (due to that of the Brownian
bridge B). This completes the proof of supg,y<.<; [A®?(s)| = 0,(1). Finally, decompose

that

A9 == [ (oula)fa? =2 VT 50) ~ [ (oula)fa? = )V, (o))

Following similar arguments for A®)(s), we can show that each term above is 0,(1) uni-

formly for s € [S(7), 1]. This completes the proof. O

C.2 Existence of Boostrap MLE and Joint Convergence of Boos-

trapped Elements
Like in Appendix B, we have the following results:

(a) With probability tending to one, the log-likelihood function is well-defined, that is,

Zf i(0uy) > —o0
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uniformly in the parameter space cl(©5, ;) with e € (0, min{v +1/2,1/2}), where cl(-)

denotes the set closure.

(b) Under the probability space of Lemma A.1,

LS (6 1) 0 ) 2 7,

b) “
na,(L) i=1

where T is defined the same way as T in the proof of Theorem 2.1 in terms of the
limiting Brownian bridges (B, Bs) of (Uy,V,,) instead of (U,,V,). Note that here all

random elements are only equal to the original ones in distributions.

(c) SUDgecl(es, ,)

ﬁ > fl-(b)Vgi(0|un) + I(d)H %, 0, where the unconditional Fisher in-

formation matrix Z(@) is defined in equation (7) in the main document.

The proofs of these claims are completely analogous to that in Appendix B: Claim (a)
follows because the weights f;b) > () does not change the finiteness of the likelihood function;
The proof of claim (b) is completely analogous, except replacing (U,,V,) with ([[Ajn,@'n)
everywhere; The proof of claim (c) is also the same by applying Proposition 1 with the
random weights. We do not repeat the details.

For part (1) of Theorem 2.2, following the proof of part (1) of Theorem 2.1 in Appendix

B, it remains to check that

1 - b n,b
N Zfz( g, (98 )|U£Lb)) = O,(1),
i=1

by combining claim (b) here with claim (b) in Subsection B by taking u, = ul? therein.
Next, we prove part (2) of the theorem. Invoke the probability space from Lemma A.1.

Let vna(d — 6y) 2 Z, where the limiting variable Z depends only on (U,,V,) and its

distribution is given in Theorem 2.1 or Corollaries 2.1-2.2. Following Csorgoé and Mason

(1989), we only need to show that

-~ ~ ~

na(@® —0) L Z ~ Z, (13)
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where Z is a random variable only based on (@n,i\’n) that is independent of (U,,V,,).

By part (1) of Theorem 2.1, in the same neighborhood 5, , for the bootstrap threshold

u? . with probability tending to 1 there exists a unweighted MLE " = (¥, logg®)T

solving
= 7@ (b
> a6 W) = 0.
i=1

Using claims (b) and (c) above and Taylor expansion,

T 1 < ~(n
> eV (050 [u) Zé ®y, - > Vg0
(b) . / S ®
nomy~ =1 noy,’ =1

== (I(d) + 0p(1)) nag’)(aén,b) B /é(n,b))

~(n,b
=~ Z(a)\/nal (65" — 8"") 1 0,(1),

")

where in the last step, we recall that the beginning term in the first line is O,(1) from the

~(n,b .
proof of part (1), and so is nal (0(()"’1)) — 0( )) by the penultimate step. Note that we use
~(n,b . . - . n ..
0( ) to denote the random weighted maximum likelihood estimator for 9(() ), Similarly,

but using claims (b) and (c¢) from Subsection B,

Zgz 0, |ul)) = Zgz 05" |ul)) — Zgz
\/ nQp, ’rLOén \/n 'n

— — (Z(@) + 0,(1)) Y na (85" — 8"

— —Z(@)\/na?6? — 8"y + 0,(1).

Subtracting these expansions and inverting the information matrix Z(a),

8" — ") » ()T, (14)

na(0

() | ~(b ) . .
Note that 9(n : is centered around 0( ) rather than 0 (the bootstraped estimator is centered
around the empirical estimator rather than the population value) in the previous equations.

Introduce the intermediate estimator 8% to be the estimator of 0y using the threshold ul
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instead of w,. Applying the delta method with (14) and using Lemma C.2, we can show

that

Vna@® — g0 L 7 ~ 7. (15)

Next, it is essential to observe that both 0® and # have the same probabilistic limit
centering around a common population value ¢y under the Skorohod construction in the

proof of Theorem 2.1. That is, under such Skorohod construction,
na(6® — 6) = vVna(f — 6,) + o0,(1).

Canceling the common terms yields that

Now combining this with (15) yields (13).
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