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Abstract

The Kaplan-Meier estimator is widely recognized as the leading nonparametric
method for estimating survival functions from censored data. However, it faces chal-
lenges with tail estimation and cannot extrapolate beyond the maximum observed
data point, particularly when the largest observation is censored. To address these
limitations, we enhance the Kaplan-Meier estimator by fitting the upper tail of the
survival function to a generalized Pareto model. This approach improves tail es-
timation and extends survival estimates beyond the observed maximum, regardless
of whether the largest observation is censored. We derive the joint asymptotic be-
havior of the Kaplan-Meier estimator in both central and tail regions by analyzing
exceedances over a high, finite threshold, leading to more accurate approximations.
Furthermore, we establish that the confidence intervals from a random weighted boot-
strap method are asymptotically correct and demonstrate its coverage performance
through numerical analysis. We illustrate the estimation and inference advantages of
our refined estimator in an application to the National Job Training Partnership Act
study.

Keywords: Survival analysis; Generalized Pareto distribution; Random weighted bootstrap;
Asymptotic normality; Duration data.
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1 Introduction

Since introducing the product limit estimator of the survival function by Kaplan and Meier

(1958), it has become one of the most widely used tools for analyzing lifetime data. Ac-

cording to PubMed1, over the past ten years, more than 10,000 papers annually have cited

the Kaplan-Meier estimator (see Figure 1). Due to its flexibility in handling censored data

nonparametrically, the Kaplan-Meier estimator is also employed to estimate the mean and

variance of survival times. Furthermore, it has served as a foundation for the development

of many advanced statistical methods in survival analysis, such as test statistics for compar-

ing treatment effects on survival times (Efron, 1967) and iterated least squares estimators

for accelerated failure time models (Jin, Lin and Ying, 2006).
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Figure 1: Annual numbers of papers citing the Kaplan-Meier estimator according to

PubMed.

An often-used procedure to estimate the full-domain survival function is to treat the

largest censored observation as uncensored (Efron, 1967). This naive setting may lead to

serious bias in the survival function and subsequent procedures. Let the observed data

1https://pubmed.ncbi.nlm.nih.gov/?term=Kaplan-Meier
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under right censoring be Xi = min{Ti, Ci} as i.i.d. copy of X = min{T,C}, where Ti and

Ci are random lifetime and censoring variable for individual i respectively. Specifically, we

can calculate the sample mean using the Kaplan-Meier estimator of the survival function

of Ti, denoted by Ŝ0(·), given by

µ̂ =

∫ ∞
0

tdŜ0(t) =
n∑

i=1

Xi{Ŝ(Xi−)− Ŝ(Xi)} (1)

0.4 0.5 0.6 0.7 0.8 0.9 1

Censoring Rate

0%

20%

40%

60%

80%

100%
The Largest Observation Is Censored

0.4 0.5 0.6 0.7 0.8 0.9 1

Censoring Rate

-1

-0.8

-0.6

-0.4

-0.2

0
Median Bias of KM Estimator

Figure 2: The probability of the largest observed value is censored (left) and biases in

estimating mean lifetime from a size 100 sample using the Kaplan-Meier estimator (right).

The survival time follows the standard exponential distribution, and the censoring time

follows an exponential distribution with a mean ranging from 0 to 2.

The left panel of Figure 2 shows the probability that the largest observed survival time

is censored in a sample of 100 individuals following a standard exponential distribution,

with right censoring by an exponentially distributed variable whose mean EC ranges from

0 to 2. The x-axis represents the overall censoring rate, 1/(1 + EC), which ranges from

1/3 to 1. The probability of the largest observation being censored aligns with the limit

derived by Maller and Zhou (1993), equaling the overall censoring rate.

The right panel of Figure 2 illustrates that the Kaplan-Meier (KM) estimator tends to

underestimate the mean lifetime in this scenario. The magnitude of the median bias, defined
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as the difference between the median estimate and the true mean, increases significantly

as the censoring rates rise. All results were obtained using Monte Carlo simulations with

100,000 replications.
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Figure 3: Probability of obtaining a zero estimate for the survival probability at various

quantile levels (left) and median bias of the Kaplan-Meier estimator, defined as the dif-

ference between its median and the true value (right). Survival times follow a standard

exponential distribution while censoring times follow an exponential distribution with a

mean of 2.

Similarly, for any threshold t0 within the support of lifetime distribution, the KM

estimator of the mean residual life eT (t0) ≡ E[Ti − t0|Ti > t0] is given by

êT (t0) =

∫∞
t0

Ŝ0(t)dt

Ŝ0(t0)
− t0 =

∑
i:Xi≥t0 Xi{Ŝ0(Xi−)− Ŝ0(Xi)}

Ŝ0(t0)
− t0. (2)

As the mean residual life increasingly depends on later survival times, its estimator, based

on the Kaplan-Meier estimator, is even more severely affected by ignoring the largest cen-

sored values. This is demonstrated in Figure 3 for a standard exponential lifetime censored

by an exponential censoring variable with a mean of 2. When the mean residual life is

evaluated at a large time, the Kaplan-Meier estimator becomes unreliable. Eventually, it
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cannot provide any estimate beyond the largest observed value. The left panel of Figure 3

shows that the probability of this issue becomes non-trivial and increases with t0 at high

quantile levels. The right panel shows the bias of the median of the Kaplan-Meier estima-

tor for the mean residual life, which initially underestimates at lower quantile levels but

dramatically overestimates at higher quantile levels. All these values were computed using

the Monte Carlo method with 100,000 replications, each based on a sample size of 100.

On the other hand, the generalized Pareto distribution can approximate the residual life

well over a long time. In particular, the extreme value theory states that when the lifetime

distribution is in the domain of attraction of extreme value distribution, there exists a

function β(u) > 0 such that

lim
u→τ0

sup
0≤x<τ0−u

|S0(x+ u)/S0(u)−G(x | γ, β(u))| = 0, (3)

where S0 denotes the population survival distribution of lifetime T and τ0 is its right

endpoint, i.e., τ0 = sup{x : S0(x) > 0} and

G(x | γ, β) = (1 + γx/β)−1/γ, 1 + γx/β > 0,

is the survival function of the generalized Pareto distribution with the shape parameter γ

and scale parameter β; see Balkema and de Haan (1974), and the overviews by Resnick

(1987) and Embrechts, Klüppelberg, and Mikosch (1997).

Therefore, we propose modeling the residual life beyond a finite, possibly unknown, suf-

ficiently high threshold using the generalized Pareto distribution (GPD). In line with He et

al. (2022), this approach recognizes that practitioners typically work with a finite threshold

and offers improved asymptotic theory, enabling us to derive non-degenerate joint limits

for central and tail estimators. By fitting the GPD to the tail using a censored maximum

likelihood method, we obtain a more efficient estimator of the tail survival distribution
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while accommodating the possibility of the largest observation being censored. To avoid

estimating the asymptotic variance in its complex form and to enhance finite-sample perfor-

mance, we propose constructing confidence intervals using a randomly weighted bootstrap

method. This approach is straightforward to implement, and we prove that it is asymptot-

ically correct.

Our semiparametric model does not specify the central part of the distribution below

the threshold. By combining the KM estimator for the regions below the threshold with our

GPD estimator for the regions above, we develop a comprehensive asymptotic theory for a

refined survival distribution estimator that extends across the full domain, even beyond the

observed data range. This asymptotic theory applies to a much broader scope than existing

literature, such as Einmahl, Fils-Villetard, and Guillou (2008) and Beirlant, Guillou, and

Toulemonde (2010), which are only applicable to three specific cases where the endpoint of

the lifetime variable must be smaller than that of the censoring variables. We have relaxed

this assumption, as it is often violated in real-life applications, including the National Job

Training Partnership Act study to be discussed here.

The rest of the paper is organized as follows. Section 2 develops a comprehensive asymp-

totic theory for the point estimation procedure and a random weighted bootstrap solution

for interval estimation. Section 3 demonstrates the good performance of our refined estima-

tion in various settings where the KM estimator fails. Section 4 provides an application to

the national Job Training Partnership Act study, illustrating the advantages of our refined

estimator in tail inference and extrapolation beyond the observed data range. We conclude

the paper in Section 5. All the proofs are available in the supplementary document.
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2 Asymptotic Theory

Consider a lifetime random variable T > 0 with a continuous survival function S0 and a

(generalized) quantile function Q0. For a threshold u0, possibly unknown, with exceedance

probability α0 = S0(u0) ∈ (0, 1), we make the following assumption regarding the ex-

ceedance T − u0. Let (x)+ = max{x, 0} denote the positive part of x.

Assumption 2.1 (Generalized Pareto Model). There exist a shape parameter γ0 ∈ R and

a scale parameter σα0 > 0 with α0 = S0(u0) such that, for x ≥ 0

P (T > u0 + x|T > u0) = G(x|γ0, σα0) =


(
1 + γ0x

σα0

)−1/γ0
+

, γ0 ̸= 0,

exp
(
− x

σα0

)
, γ0 = 0.

The shape parameter γ0 is called the extreme value index for the lifetime distribution.

When γ0 < 0, there is a finite right endpoint τ0 ≡ u0−
σα0

γ0
in the support of the distribution

of T , i.e., S0(t) = 0 for all t ≥ τ0. When γ0 = 0, T − u0 | T > u0 has an exponential

distribution with mean σα0 . When γ0 > 0, T has a heavy tail with up to 1/γ0-th finite

moments. Note that σα0 is also a function of u0 through α0 = S0(u0).

Observe that, for any higher threshold u > u0, the exceedance T − u | T > u fol-

lows the generalized Pareto distribution with the same shape parameter γ0 but a different

scale parameter σα = (α0/α)
γ0σα0 , where α = S0(u) is the probability of exceeding u.

Specifically,

P (T > u+ x | T > u) = G(x | γ0, σα),

where G(x | γ0, σα) denotes the generalized Pareto distribution function with shape pa-

rameter γ0 and scale parameter σα.

Let T1, . . . , Tn be independent lifetime random variables with a common survival func-

tion S0 satisfying Assumption 2.1. Let C1, . . . , Cn be independent censoring random vari-

ables, independent of the Ti’s, with a possibly non-continuous and possibly defective com-
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mon survival function SC (that is, we may have lim
x→∞

SC(x) > 0). We observe the censored

data (X1, δ1), . . . , (Xn, δn), where

Xi = min{Ti, Ci} = δiTi + (1− δi)Ci, δi = 1[Ti ≤ Ci].

Let S = S0 · SC denote the survival distribution of Xi.

Let X1:n ≤ . . . ≤ Xn:n denote the order statistics of X1, . . . , Xn. Denote by δi,n the

induced order statistics of δ1, · · · , δn associated with Xi:n, such that (Xi:n, δi,n) ∈ {(Xi, δi) :

1 ≤ i ≤ n}. The Kaplan and Meier (1958) estimator of the lifetime survival function S0 is

given by

Ŝ0(t) =
∏

Xi:n≤t

(
n− i

n− i+ 1

)δi,n

. (4)

Note that Ŝ0(Xn:n) = 0 if Xn:n is not censored, but Ŝ0(Xn:n) > 0 otherwise. In the latter

case, one may redefine Ŝ0(x) = 0 for x > Xn:n if necessary.

Under Assumption 2.1, we can refine this estimator using the generalized Pareto model.

Let us choose a sufficiently large threshold, denoted by un < Xn:n, with an estimated

exceeding probability

α̂n = Ŝ0(un). (5)

Then, we can approximate S0(t) for t > un by

Ŝ0(t | γ, log σ) = α̂nG (t− un | γ, log σ) , (6)

where G denotes the generalized Pareto survival function defined in Assumption 2.1 with

appropriate parameters (γ, log σ) such that 1 + γ(Xn:n−un)
σ

> 0. One advantage of the

generalized Pareto model is its ability to extrapolate beyond the data range, even when the

data maximum is below the endpoint of the true distribution support due to the censoring

mechanism.

8



To use (6), we estimate the parameters by the maximum likelihood method for censored

data. Given an exceedance X − un = x > 0 and the associated censoring indicator δ, the

censored log-likelihood function (for 1 + γx/σ > 0) is given by

ℓ(γ, log σ|x, δ) =


log (−G′(x|γ, σ)) δ = 1

logG(x|γ, σ) δ = 0

=δ log(−G′(x|γ, σ)) + (1− δ) logG(x|γ, σ)

=δ log λ(x|γ, σ) + logG(x|γ, σ),

where

λ(x|γ, σ) = −G′(x|γ, σ)
G(x|γ, σ)

=
(
1 +

γ

σ
x
)−1 1

σ

is the hazard rate for the generalized Pareto model. Now, under Assumption 2.1, we can

compute the log-likelihood function explicitly given by

ℓ(γ, log σ|x, δ) = −δ
{
log
(
1 +

γ

σ
x
)
+ log σ

}
− 1

γ
log
(
1 +

γ

σ
x
)
,

which is well-defined at γ = 0 by

ℓ(0, log σ|x, δ) := lim
γ→0

ℓ(γ, log σ|x, δ) = −δ log σ − x

σ
.

The total log-likelihood for the sample exceedances is therefore given by

n∑
i=1

ℓ(γ, log σ|Xi − un, δi)1[Xi > un],

which is finite if and only if

1 + γ(Xn:n − un)/σ > 0.

When there is no censoring (δi = 1 for all i), the likelihood reduces to the standard one

for fitting GPD to the data Xi = Ti and one finds relevant asymptotic theory in He et al.

(2022).

We assume that our threshold statistic un satisfies the following conditions.
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Assumption 2.2. The following conditions hold.

(a) The threshold un = un(X1, . . . , Xn) is an arbitrary measurable statistic such that

S0(un)
p−→ ᾱ for some ᾱ ∈ (0, α0), where S0 is the lifetime survival function and ‘

p−→’

denotes convergence in probability;

(b) The survival function of C, namely SC , is Lipschitz continuous and positive in a neigh-

borhood of the limiting threshold ū := Q0(1−ᾱ) and has a bounded variation on (u0, τ),

where τ = sup{x : S(x) > 0} denotes the right endpoint of survival distribution S of

censored observation Xi = min{Ti, Ci}.

The first condition allows a general threshold statistic, such as any appropriate quantile

statistic or any appropriate fixed value. The convergence rate towards the limiting threshold

can be arbitrary. The second condition on SC requires only continuity in a neighborhood

around the (limiting) threshold to avoid some irregular thresholding effects. The bounded

variation condition is only needed for using the integration by parts in our proofs, and it

allows for many discontinuous functions that are discontinuous at a countable set of points.

Using Gertsbakh (1995)’s formula, the unconditional Fisher information matrix

I(ᾱ) = − 1

ᾱ
E[∇2

(γ,log σ)ℓ(γ, log σ | Xi − ū, δi)1[X > ū]] (7)

associated with the limiting threshold ū has the integral form

I(ᾱ) = E[I(γ0, log σᾱ | Z)1[Z > 0]], Z = C − ū,

where I(γ, log σ | z) is the conditional Fisher information matrix given by

I(γ, log σ | z) =
∫ z

0

−G′(x | γ, σ)s(γ, log σ | x)s⊤(γ, log σ | x) dx

+G(z | γ, σ)w(γ, log σ | z)w⊤(γ, log σ | z),
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where s(γ, log σ | x) = ∇(γ,log σ) log(−G′(x | γ, σ)) denotes the lifetime score functions for

generalized Pareto distributions with respect to (γ, log σ)⊤, w(γ, log σ | x) = ∇(γ,log σ) logG(x |

γ, σ) represents the censoring score function, and A⊤ denotes the transpose of vector or

matrix A. Note that I(γ, log σ | z) is positive definite for every z > 0, and I(ᾱ) is also

positive definite by part (b) of Assumption 2.2.

The following theorem establishes the existence of the maximum likelihood estimators

(MLEs) for the generalized Pareto parameters and their joint asymptotic normality with

the Kaplan-Meier (KM) estimator. Let S̃(x) = P(Xi > x, δi = 1) denote the (improper)

survival distribution when the observation is not censored. Denote weak convergence by

‘
w−→’, and let D(I) represent the (generalized) Skorokhod space of functions on the interval

I that may have jump discontinuities; see, e.g., Billingsley (1999), Section 12.

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold with a true parameter γ0 > −1
2
.

(1) With probability tending to 1, there exists a maximum likelihood estimator θ̂n = (γ̂, log σ̂)⊤

in the local parameter space

Θε
n =

{
θ ∈ R2 :

∥∥∥θ − θ
(n)
0

∥∥∥ < n−1/2+ε
}
, (8)

for any ε ∈ (0,min{γ0 +1/2, 1/2}), where θ
(n)
0 = (γ0, log σαn)

⊤ denotes the true values

adaptive to the threshold statistic un.

(2) Any maximum likelihood estimator sequence from part (i) is asymptotically normal

jointly with the product-limit process {Ŝ0(t) : t ≤ τ} for any point τ with S(τ) > 0 in

such a way that, in the product space D([0, Q(1− τ)])× R2

(
√
n

(
Ŝ0(·)
S0(·)

− 1

)
,
√
nᾱ (γ̂ − γ0) ,

√
nᾱ

(
σ̂

σαn

− 1

))
w−→ (Z(S(·)),Γ,Λ)

where the process Z, Γ, and Λ are jointly Gaussian and related through Brownian
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bridges B1 and B2 that are jointly Gaussian with cross-covariance structure

cov(B1(s), B2(t)) = min{ρ̃(s), t} − st, ρ̃(s) = P(S(Xi) < s, δi = 1),

in the following way:

(i) Z(s) =
∫ 1

s
B1(x)x

−2dρ̃(x)−
∫ 1

s
x−1dB2(ρ̃(x))

(ii) (Γ,Λ)⊤ = [I(ᾱ)]−1Υ, where the Fisher information matrix I(ᾱ) defined in (7) is

positive definite, and the random vector Υ is given by

Υ =−

 0

B2(S̃(Q0(1− ᾱ)))

+

∫ 1

0

B2(S̃(Q0(1− ᾱt)))υ1,γ0(t)dt

−
∫ 1

0

B1(S(Q0(1− ᾱt)))υ2,γ0(t)dt

with the vector functions

υ1,γ0(t) =

−tγ0−1
γ0t

γ0−1

 , and υ2,γ0(t) =

t−1
(

tγ0−1
γ0

)
−tγ0−1

 .

When γ0 = 0, we interpret the first entry of υ2,γ0(t) as its continuous extension

given by t−1 log t.

Recall our threshold statistic un and take any upper bound τ > ū such that P(un <

τ) → 1. With the Kaplan-Meier estimator Ŝ0(t), t ∈ [0, un], and the maximum likelihood

estimator γ̂, and σ̂, we propose the following refined estimator of the lifetime survival

function on the whole positive line,

Ŝ0(t;un) =


Ŝ0(t) t ≤ un

Ŝ0(un)G(t− un|γ̂, σ̂) t > un

,
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where G(·|γ, σ) is the generalized Pareto survival function defined in Assumption 2.1. Ac-

cordingly, we can estimate the mean of T , for γ̂ < 1,

µ̂T =

∫ ∞
0

Ŝ0(t;un)dt (9)

=

∫ un

0

Ŝ0(t)dt+ Ŝ0(un)×
σ̂

1− γ̂
. (10)

Observe that, when un > u0, we can also expand the true survival function beyond un and

the mean and variance of T adaptively as follows,

S0(t) = S0(un)G(t− un|γ0, σαn),

µT =

∫ ∞
0

S0(t)dt =

∫ un

0

S0(t)dt+ S0(un)
σαn

1− γ0
.

The corollary below follows directly from the delta method.

Corollary 2.1. Under the conditions of Theorem 2.1,

(1)
√
n
(
Ŝ0(·;un)− S0(·)

)
w−→ S(·) in D([0,∞)), where

S(t) = S0(t)Z(S(min{t, ū})) + ᾱ(Γ,Λ)⊤∇(γ,log σ)G((t− ū)+|γ0, σᾱ),

where

∇(γ,log σ)G(x|γ0, σᾱ) = G(x|γ0, σᾱ)

 1
γ2
0

{
log
(
1 + γ0x

σᾱ

)
− γ0x/σᾱ

1+γ0x/σᾱ

}
x/σᾱ

1+γ0x/σᾱ
,


and, when γ0 = 0, first entry on the right-hand-side should be interpreted as it contin-

uous extension given by G(x|0, σ̄) · 1
2

(
x
σ

)2
.

(2) If provided that γ0 < 1,

√
n (µ̂T − µT )

d−→M

where ‘
d−→’ denotes convergence in distribution, and

M =

∫ ū

0

Z(S(t))dt+ ᾱ
σᾱ

1− γ0

{
Z(S(ū)) +

1

1− γ0
Γ + Λ

}
.
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Using Vervaat (1972) Lemma (see also Appendix A in de Haan and Ferreira, 2006),

under the Skorokhod construction, the weak convergence of the refined estimator of the

survival function also implies the weak convergence of the refined quantile estimator under

mild differentiability conditions. Consider the refined estimator of the lifetime quantile

function

Q̂0(1− p;un) =


Ŝ←0 (1− p) p ≥ α̂n,

un +QG(1− p/α̂n; γ̂, σ̂) p < α̂n,

where α̂n = Ŝ0(un), ‘←’ denotes the left-continuous inverse, and QG(·; γ, σ) is the quantile

function of G(· | γ, σ) given by

QG(1− p; γ, σ) =


σ
γ
(p−γ − 1) γ ̸= 0,

σ log(1/p) γ = 0.

In particular, when γ0 < 0, we can estimate the end-point τ0 by

τ̂0 = QG(1; γ̂, σ̂) = un −
σ̂

γ̂
,

where the second equation holds with probability tending to one due to the consistency of

γ̂.

The next corollary gives the weak convergence of our refined (high) quantile estimators.

Corollary 2.2. Under the conditions of Theorem 2.1, for any compact interval I ⊂ (0, 1)

on which S0 is strictly decreasing and continuously differentiable,

√
n
(
Q̂0(·;un)−Q0(·)

)
w−→ Q(·),

in D(I) where Q(1− p) = p
S′
0(Q0(1−p))S(Q0(1− p)). In particular, for every high quantile at

survival probability level p ∈ (0, α0),

√
nᾱ

σp

(
Q̂0(1− p;un)−Q0(1− p)

)
d−→ q

(
ᾱ

p

)⊤
(Γ,Λ) + Z(S(ū)),
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where

q(t) =

(∫ t

1

(s
t

)γ0 log s
s

ds,
1− t−γ0

γ0

)⊤
, t > 0,

and it should be interpreted by continuity as
(
1
2
(log t)2 , log t

)⊤
when γ0 = 0. When γ0 < 0,

the same holds for p = 0 in the sense that
√
nᾱ(τ̂0 − τ0)

d−→ −σᾱ

γ0

(
− 1

γ0
Γ + Λ

)
.

Remark 1. Although we study different statistics separately in Theorem 2.1 and Corollaries

2.1–2.2, their weak convergence holds jointly, with the limiting random elements defined

on the same probability space.

Remark 2. To ensure that our estimator of the endpoint is no smaller than the data

maximum, one can use τ̂0 = max{un − σ̂/γ̂, Xn:n} and the same asymptotic holds when

γ0 > −1/2.

In general, the asymptotic variance above takes a complex form that depends on the

unknown functions S0, S̃, and S. To facilitate convenient inference and improve finite-

sample coverage, we propose constructing confidence intervals using the random weighted

bootstrap procedure described below. Consider the true parameter θ0 from one of the

following or its log transformation: µT , S0(t) for some t ∈ (0, τ0), or Q0(1 − p) for some

p ∈ (0, 1), as well as the endpoint τ0 = Q0(1) if it exists. Denote the refined estimator by

θ̂. We propose the following interval inference procedure for θ0:

(Step 1) Draw a random sample of size n from a subexponential distribution with mean

one and variance one, such as the standard exponential distribution. Denote the

sample as ξ
(b)
1 , . . . , ξ

(b)
n > 0. Let ξ

(b)
i,n be the induced order statistics of {ξ(b)i : i =

1, . . . , n}, associated with Xi:n.

(Step 2) Choose a threshold statistic u
(b)
n satisfying u

(b)
n = un+op(1), which may depend on

ξ(b) = (ξ
(b)
1 , . . . , ξ

(b)
n )⊤T , or simply as un. Solve for the weighted maximum likelihood

15



estimators γ̂(b) and σ̂(b) by maximizing the following:

n∑
i=1

ξ
(b)
i ℓi(γ, log σ | Xi − u(b)

n , δi)1[Xi > u(b)
n ].

Additionally, calculate the random weighted Kaplan-Meier (KM) estimator as follows:

Ŝ0(t; ξ
(b)) =

∏
Xi:n≤t

(
1−

ξ
(b)
i,n∑

j≥i ξ
(b)
j,n

)δi,n

.

Replace (γ̂, σ̂, Ŝ0(·)) with (γ̂(b), σ̂(b), Ŝ0(·; ξ(b))) to obtain the random weighted estima-

tor θ̂(b).

(Step 3) Repeat the above steps B times to obtain the set of estimators {θ̂(b)}Bb=1. For a

sufficiently large B, this process yields the conditional distribution of θ̂(b) given the

observations. Based on this, we can construct confidence intervals according to the

following theorem.

Theorem 2.2. Suppose the conditions of Theorem 2.1 hold. Consider the true parameter

θ0 from one of the following, or its log transformation, provided it exists: the lifetime mean

µT , a survival probability S0(t) for some t ∈ (0, τ0), a quantile Q0(1−p) for some p ∈ (0, 1),

as well as the endpoint τ0 = Q0(1) if it exists, or the extreme value index γ0. Then for

any bootstrap threshold statistic u
(b)
n = un + op(1) with α

(b)
n := 1 − F (u

(b)
n ), the bootstrap

procedure is asymptotically valid in the following sense.

(1) With probability tending to 1, there exists a maximum likelihood estimator θ̂
(b)

n =

(γ̂, log σ̂)⊤ in the local parameter space

Θε
n,b =

{
θ ∈ R2 :

∥∥∥θ − θ
(n,b)
0

∥∥∥ < n−1/2+ε
}
, (11)

for any ε ∈ (0,min{γ0 + 1/2, 1/2}), where θ
(n,b)
0 =

(
γ0, log σα

(b)
n

)⊤
denotes the true

values adaptive to the bootstrap threshold.
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(2) For a one-sided confidence interval at any confidence level a ∈ (0, 0.5),

P
(
θ0 ≤ θ̂ + c̃n(a)

)
→ 1− a, and P

(
θ0 ≥ θ̂ − c̃n(a)

)
→ 1− a,

where

c̃n(a) = max{−qn(a), qn(1− a)},

qn(p) ≡ inf
{
x : P

(
θ̂(b) − θ̂ ≤ x|(X1, δ1), . . . , (Xn, δn)

)
≥ p
}
.

(3) For a two-sided confidence interval at any confidence level a ∈ (0, 1),

P
(∣∣∣θ̂ − θ0

∣∣∣ ≤ cn(a)
)
→ 1− a,

where

cn(a) = inf
{
x : P

(∣∣∣θ̂(b) − θ̂
∣∣∣ ≤ x|(X1, δ1), . . . , (Xn, δn)

)
≥ 1− a

}
. (12)

Furthermore, the results extend to θ0 = σαn, as well as its log-transformation, if we main-

tain the same threshold u
(b)
n ≡ un in the bootstrap samples.

Remark 3. For the two-sided confidence interval, one can also use a slightly more con-

servative option with higher coverage, cn(a) = c̃n(1 − a/2), which is also asymptotically

correct.

Observe that the theorem implies that one can construct a consistent estimator of the

asymptotic variance of θ̂ via cn(a), leading to the following corollary for two-sample tests

when combined with the asymptotic normality of θ̂ from Theorem 2.1 and Corollaries

2.1–2.2.

Corollary 2.3. Consider two independent samples indexed by s ∈ {1, 2}, with raw estima-

tors θ̂s and randomly weighted estimators θ̂
(b)
s of the true parameter θ0,s, respectively, both
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satisfying the conditions in Theorem 2.2. Let cn,s(a) denote the bootstrap critical value (12)

for each sample s ∈ {1, 2} for some specific a ∈ (0, 1). Suppose we estimate the difference

θ0 ≡ θ0,2 − θ0,1 by θ̂ ≡ θ̂2 − θ̂1. Then,

[ŝa(θ̂)]
−1
(
θ̂ − θ0

)
d−→ N (0, 1),

where

ŝa(θ̂) =
√
(cn,1(a))2 + (cn,2(a))2/Φ

−1(1− a/2), (13)

and Φ−1 denotes the inverse of the standard normal distribution function.

Remark 4. As a byproduct, we obtain that the bragging (bootstrap robust aggregating)

estimator

θ̂B = Median
(
θ̂(b) | (X1, δ1), . . . , (Xn, δn)

)
(14)

is asymptotically indistinguishable from θ̂, and therefore the results above apply to both.

Since it is well known that maximum likelihood estimation for the generalized Pareto distri-

bution is not a globally concave problem and can suffer from local minima, we recommend

using this bragging estimator, especially in small samples.

3 Simulation Study

We consider three settings and compare the results for the Kaplan-Meier (KM) estimator

and our refined estimator based on the generalized Pareto model for estimating three

different sets of parameters for the lifetime distribution: the mean, survival probabilities,

and quantiles. The sample size is fixed at n = 2000, and the results are reported over 10,000

Monte Carlo replications. For each replication, we generate B = 500 bootstrap datasets to

construct two-sided confidence intervals using the bragging estimator from Remark 4.
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3.1 Unbounded but short lifetime

We revisit the example from the introduction. The lifetime variables, Ti, and censoring

variables, Ci, are both exponentially distributed with light tails and an extreme value index

of γ0 = 0. We are interested in estimating the lifetime mean, µT = 1. While the mean of

Ti is fixed, we vary the mean of the censoring variable Ci, decreasing from 2, 1.8, ..., 1,

corresponding to an increase in the censoring rate from 1/3 to 1/2. We use the 90% sample

quantile as our threshold un and the confidence intervals of µT . We report the results for

the confidence intervals constructed based on the log transformation θ0 = log µT to ensure

positive estimates. The results are very similar to those obtained using θ0 = µT directly.
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Censoring Rate
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Figure 4: Box plot of estimation errors (left) and the coverage probabilities of the 95% and

90% confidence intervals (right) for the lifetime mean using our refined estimator (GPD)

and the Kaplan-Meier (KM) estimator across different censoring rates. Both lifetime and

censoring variables follow an exponential distribution.

The box plots of the estimation error in Figure 4 show that the KM estimator suffers

from estimation bias. This bias causes the bootstrap confidence intervals to significantly

undercover the true lifetime mean. As the censoring rate increases, the likelihood of the

largest observations being censored grows (see Figure 2), resulting in a greater bias in the
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KM estimator and an almost linear decline in coverage probability, as shown on the right

side of Figure 4.

In contrast, our refinement using the generalized Pareto distribution (GPD) nearly elim-

inates the bias, and the bootstrap confidence intervals maintain relatively stable coverage

across different censoring rates, as depicted in Figure 4. The intervals achieve nearly correct

coverage at both the 95% and 90% confidence levels.

3.2 Bounded lifetime

We calibrate the lifetime variables Ti from the generalized Pareto distribution with γ0 =

−0.4, which is well fitted to the Australian AIDS data in Venables and Ripley (2002)

by using the sample median as our threshold un. We restrict the lifetime distribution to

have a bounded support of (0, 8). We also calibrate the censoring variables Ci from a

half Cauchy distribution with a median of 0.9 and support on (0,∞). The censoring rate

is approximately 64%. Figure 5 shows that our refined estimator outperforms the KM

estimator beyond the threshold, exhibiting a smaller median absolute estimation error and

shorter confidence intervals on average while maintaining nearly correct coverage levels of

95% and 90% at each quantile level when applying the random weighted bootstrap method.

Our generalized Pareto estimator loses slight coverage probability in very high quantiles

close to the endpoint, primarily due to a small probability in finite samples for the extreme

value index estimator γ̂ being close to 0. This issue is well-documented in extreme value

theory even without censoring(see, e.g., Li and Peng, 2012) and typically diminishes as the

sample size increases, owing to the consistency of γ̂. However, addressing this finite-sample

problem is beyond the scope of this paper.
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Figure 5: Comparison of the performance between the Kaplan-Meier (KM) estimator and

our refined estimator (GPD) for survival probabilities on a log scale, i.e., logS0(t), across

different quantiles t. From left to right are the median absolute error, average length of

the 95% confidence intervals, and coverage probabilities of the 95% and 90% bootstrap

confidence intervals. The lifetime is generalized Pareto with endpoint τ0 = 8, and the

censoring variable is half Cauchy.

3.3 Unbounded long lifetime censored by bounded variable

We calibrate the quantiles of the lifetime variable Ti from our empirical application to

unemployment duration data in the next section, using the generalized Pareto distribution

with γ0 = 0.6, unit scale, and full support on (0,∞). This distribution has a finite mean of

approximately 2.5 but an infinite variance. The censoring variables are defined as Ci = 3Bi,

where Bi follows a Beta(4, 1) distribution, yielding a censoring rate of approximately 24%.

We fix the threshold to be un = 0.5.

In this setting, unlike the previous examples, the outcome Xi = min{Ti, Ci} is bounded

by τ = 3 due to censoring, while the lifetime variable is unbounded. To make the KM

estimator feasible for quantiles beyond the endpoint τ = 3, we extrapolate linearly beyond

the data range. The generalized Pareto estimator, on the other hand, naturally extrapolates
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and requires no special adjustment.
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Figure 6: Comparison of the performance between the Kaplan-Meier (KM) estimator and

our refined estimator (GPD) for quantiles on a log scale, i.e., logQ0(p), across different

quantile levels p from 0.1 to 0.9. From left to right are the median absolute error, average

length of the 95% confidence intervals, and coverage probabilities of the 95% and 90%

bootstrap confidence intervals. The vertical line indicates the quantile level of endpoint

τ = 3 with respect to the lifetime distribution.

Figure 6 shows that our refined estimator performs similarly to the KM estimator in the

central region but significantly outperforms it around and beyond the endpoint, showing

smaller median estimation error and shorter confidence intervals on average. The KM

estimator performs well until it approaches the outcome endpoint, approximately the 0.82

quantile of the lifetime distribution, after which its estimation error increases dramatically.

In contrast, the extrapolation based on the fitted generalized Pareto distribution provides

a smooth transition beyond the outcome endpoint, resulting in a substantially smaller

median absolute error and shorter confidence intervals on average. Moreover, the bootstrap

confidence intervals based on our refined estimator maintain almost correct coverage, while

those based on the KM estimator tend to undercover, even when they are much wider,
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beyond the data range.
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Figure 7: Comparison of the performance between the Kaplan-Meier (KM) estimator and

our refined estimator (GPD) for the difference in quantiles, on a log scale, over two inde-

pendent samples. From left to right are the median absolute estimation error, average of

the estimated standard error, and rejection probabilities of the two-sided t-test for equal

quantiles at the 5% and 10% significance levels. The vertical line indicates the quantile

level of the endpoint τ = 3 with respect to the lifetime distribution.

Next, we show that our bootstrap procedure can be used for a two-sample test according

to Corollary 2.3. We generate another independent sample from the same data-generating

process but with half the sample size, that is, a sample size of 1000. Then, we estimate

the difference in their quantiles on a log scale and evaluate the rejection probability of

the two-sided t-test of quantile equality at significance levels of 5% and 10%, using the

bootstrapped standard error (13) with a = 0.1 (the results for a = 0.05 are similar and

hence omitted).

Again, our refined estimator outperforms the KM estimator almost everywhere above

the threshold, especially beyond the endpoint, as shown in Figure 7. The KM estimator

suffers from large estimation errors in the tail, resulting in nearly zero rejection rates around
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and beyond the endpoint. In contrast, our refined estimator maintains almost correct size

across most quantile levels.

4 Empirical Illustration

We illustrate the advantage of our refined estimator by analyzing a US dataset from the

national job training study initially analyzed by Bloom et al. (1997). This study is a

large-scale randomized experiment evaluating the programs funded by the Job Training

Partnership Act (JTPA) of 1982. Each individual was randomly assigned to either the

control or treatment group. About 2/3 of the individuals were assigned to the treatment

group, so they were allowed to enroll in a JTPA-funded training program. The rest, 1/3 of

the individuals assigned to the control group, were generally excluded from receiving JTPA

services for 18 months, though they may still participate in another training program.

Following Abadie, Angrist, and Imbens (2002), we split the analysis for females and males.

Furthermore, we split the sample into two subsamples according to the random assignment.

We are interested in the duration Ti between the treatment assignment and finding

employment as in Frandsen (2015) and Ba et al. (2017). However, this duration is censored

by the duration Ci between the random assignment and the follow-up interview. Since the

follow-up surveys were scheduled relative to the treatment assignment date rather than a

fixed calendar date, we consider these censoring events to be independent, as argued by

Frandsen (2015).

We obtained the cleaned dataset directly from the online supplement of Beyhum,

Tedesco, and Van Keilegom (2024), which consists of 7,876 individuals with no missing

values in their analysis. The censoring rate is similar across the control and treatment

groups, with approximately 15% for males and 24% for females. To convert the duration
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data from days to years, we divide the duration in days by 365.

We then fit censored generalized Pareto models to the long-term unemployment duration

data by taking the conventional threshold as 27 weeks (approximately half a year) to all

groups divided by treatment assignment and sex. Figure 8 demonstrates the good fit of the

generalized Pareto model to the quantile function obtained from the KM estimator across

all groups. The quantile function for the treatment group is almost everywhere lower than

the control group for the females, while the quantile function for the male treatment group

is similar to the male control group at the lower quantile levels. This aligns with Abadie,

Angrist, and Imbens (2002)’s observation that quantile treatment effects for males are only

significant at higher quantiles.
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Figure 8: Quantile function based on the KM estimator and our refined estimator (GPD).

The dotted line shows the threshold, and the dashed line shows the maximum of the

uncensored duration over both control and treatment groups.

The KM estimator of the quantile function is truncated at the maximum uncensored

duration within each group, as the largest observations are censored. This truncation
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results in a substantial underestimation of the duration mean compared to our refined

estimator, as shown in Table 1. We also report the extreme value index γ̂ and the scale

parameter σ̂ for the fitted generalized Pareto model. Our refined estimator, benefiting from

extrapolation, yields values more than four times higher than the KM estimator for females

and more than twice as high for males. This large difference arises because the fitted tail of

the lifetime distribution is too heavy to maintain a finite variance, with an extreme value

index γ̂ > 1/2 for all groups except the male treatment group (for which we could not

reject this null hypothesis either).

The fitted generalized Pareto parameters are similar between the treatment and control

groups, suggesting that the hazard rate beyond the threshold is comparable. In fact,

in an unreported analysis, we cannot reject the equality of these parameters using the

bootstrap confidence interval derived from Corollary 2.3. This suggests that the conditional

training effect becomes insignificant given that a female or male individual has already been

unemployed for more than 27 weeks. This finding is consistent with Ba et al. (2017).

Lifetime Mean µ̂T

Female, Control Female, Treatment Male, Control Male, Treatment

KM 0.59 0.59 0.55 0.53

GPD 2.66 2.39 1.31 1.12

Generalized Pareto Parameters

Female, Control Female, Treatment Male, Control Male, Treatment

γ̂ 0.69 0.71 0.51 0.44

σ̂ 1.20 0.98 0.94 0.95

Table 1: Comparison of the KM estimator and GPD estimator of the lifetime mean.

On the other hand, we find unconditional effects at various quantile levels. To test for
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Figure 9: The pointwise t-statistic for testing the equality of quantiles between the control

and treatment groups across various quantile levels.

the equality of (unconditional) quantiles between the control and treatment groups, we

present in Figure 9 the pointwise t-statistic, constructed using the bootstrapped standard

error from Corollary 2.3 with a = 0.1 (the results for a = 0.05 are nearly identical and are

omitted). Like in our simulation study, the KM estimator suffers from size issues and yields

only small t-statistics at high quantile levels. In contrast, our refined estimator consistently

produces large negative t-statistics for females across every quantile level, while for males,

the t-statistics remain small at the lower quantiles.

5 Concluding Remarks

The Kaplan-Meier (KM) estimator is widely used in survival analysis to estimate the dis-

tribution function under censoring, but it is reliable only within the observed data range.

When the largest observation(s) are censored, the KM estimator becomes improper, leading

to significant bias in estimating tail information beyond the range, as well as in estimating
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the mean of the lifetime distribution if the tail is not negligible. Motivated by extreme value

theory, we propose a refined method by fitting a generalized Pareto distribution (GPD) be-

yond a finite but sufficiently high threshold. While we find the GPD model highly effective

in practice, developing a distribution-free goodness-of-fit test remains an important avenue

for future research.

Our approach combines the non-parametric robustness of the KM estimator in the

central region with the parametric efficiency of the GPD in the tail. This semiparamet-

ric method allows for reliable extrapolation beyond the data range. We have developed

a comprehensive theory establishing the asymptotic normality of our refined estimator,

along with the asymptotic validity of an easy-to-implement random weighted bootstrap

method for inference. This bootstrap procedure performs well in finite-sample settings, as

demonstrated by both simulation studies and empirical applications.

Additionally, we provided a straightforward extension of our approach for a two-sample

test, which can be useful for causal analysis, as illustrated in our empirical application to

a large-scale job training study. Extending this approach to a regression framework could

yield more insightful analysis and is an interesting direction for future work.

SUPPLEMENTARY MATERIAL

The supplementary material includes the proofs for all the theorems from Section 2.
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