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Abstract

The Kaplan-Meier estimator is widely recognized as the leading nonparametric
method for estimating survival functions from censored data. However, it faces chal-
lenges with tail estimation and cannot extrapolate beyond the maximum observed
data point, particularly when the largest observation is censored. To address these
limitations, we enhance the Kaplan-Meier estimator by fitting the upper tail of the
survival function to a generalized Pareto model. This approach improves tail es-
timation and extends survival estimates beyond the observed maximum, regardless
of whether the largest observation is censored. We derive the joint asymptotic be-
havior of the Kaplan-Meier estimator in both central and tail regions by analyzing
exceedances over a high, finite threshold, leading to more accurate approximations.
Furthermore, we establish that the confidence intervals from a random weighted boot-
strap method are asymptotically correct and demonstrate its coverage performance
through numerical analysis. We illustrate the estimation and inference advantages of
our refined estimator in an application to the National Job Training Partnership Act
study.

Keywords: Survival analysis; Generalized Pareto distribution; Random weighted bootstrap;
Asymptotic normality; Duration data.



1 Introduction

Since introducing the product limit estimator of the survival function by Kaplan and Meier
(1958), it has become one of the most widely used tools for analyzing lifetime data. Ac-
cording to PubMed!, over the past ten years, more than 10,000 papers annually have cited
the Kaplan-Meier estimator (see Figure 1). Due to its flexibility in handling censored data
nonparametrically, the Kaplan-Meier estimator is also employed to estimate the mean and
variance of survival times. Furthermore, it has served as a foundation for the development
of many advanced statistical methods in survival analysis, such as test statistics for compar-
ing treatment effects on survival times (Efron, 1967) and iterated least squares estimators

for accelerated failure time models (Jin, Lin and Ying, 2006).
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Figure 1: Annual numbers of papers citing the Kaplan-Meier estimator according to

PubMed.

An often-used procedure to estimate the full-domain survival function is to treat the
largest censored observation as uncensored (Efron, 1967). This naive setting may lead to

serious bias in the survival function and subsequent procedures. Let the observed data
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under right censoring be X; = min{7;, C;} as i.i.d. copy of X = min{T,C}, where T; and
C; are random lifetime and censoring variable for individual ¢ respectively. Specifically, we
can calculate the sample mean using the Kaplan-Meier estimator of the survival function

of T}, denoted by §0(-), given by
= / tdSo(t) = > Xi{S(X,—) — S(X;)} (1)
0 i=1
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Figure 2: The probability of the largest observed value is censored (left) and biases in
estimating mean lifetime from a size 100 sample using the Kaplan-Meier estimator (right).
The survival time follows the standard exponential distribution, and the censoring time

follows an exponential distribution with a mean ranging from 0 to 2.

The left panel of Figure 2 shows the probability that the largest observed survival time
is censored in a sample of 100 individuals following a standard exponential distribution,
with right censoring by an exponentially distributed variable whose mean EC ranges from
0 to 2. The z-axis represents the overall censoring rate, 1/(1 + EC'), which ranges from
1/3 to 1. The probability of the largest observation being censored aligns with the limit
derived by Maller and Zhou (1993), equaling the overall censoring rate.

The right panel of Figure 2 illustrates that the Kaplan-Meier (KM) estimator tends to

underestimate the mean lifetime in this scenario. The magnitude of the median bias, defined



as the difference between the median estimate and the true mean, increases significantly
as the censoring rates rise. All results were obtained using Monte Carlo simulations with

100,000 replications.
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Figure 3: Probability of obtaining a zero estimate for the survival probability at various
quantile levels (left) and median bias of the Kaplan-Meier estimator, defined as the dif-
ference between its median and the true value (right). Survival times follow a standard
exponential distribution while censoring times follow an exponential distribution with a

mean of 2.

Similarly, for any threshold ¢, within the support of lifetime distribution, the KM

estimator of the mean residual life er(ty) = E[T; — to|T; > to] is given by

/6\ (t _ LZO §0(t>dt = ZiiXiZto Xz{§0<Xz_) - §0(Xz)}
T\ §0(t0) 0 §0<t0)

— 1. (2)

As the mean residual life increasingly depends on later survival times, its estimator, based
on the Kaplan-Meier estimator, is even more severely affected by ignoring the largest cen-
sored values. This is demonstrated in Figure 3 for a standard exponential lifetime censored
by an exponential censoring variable with a mean of 2. When the mean residual life is

evaluated at a large time, the Kaplan-Meier estimator becomes unreliable. Eventually, it



cannot provide any estimate beyond the largest observed value. The left panel of Figure 3
shows that the probability of this issue becomes non-trivial and increases with ¢y at high
quantile levels. The right panel shows the bias of the median of the Kaplan-Meier estima-
tor for the mean residual life, which initially underestimates at lower quantile levels but
dramatically overestimates at higher quantile levels. All these values were computed using
the Monte Carlo method with 100,000 replications, each based on a sample size of 100.
On the other hand, the generalized Pareto distribution can approximate the residual life
well over a long time. In particular, the extreme value theory states that when the lifetime
distribution is in the domain of attraction of extreme value distribution, there exists a

function f(u) > 0 such that

lim sup  [So(x +u)/So(u) — G(z | v, B(u))| =0, (3)

U—T0 0<z<Tp—Uu

where Sy denotes the population survival distribution of lifetime 7" and 7y is its right

endpoint, i.e., 7o = sup{z : Sp(z) > 0} and

Gz |v,8) =1 +~yz/8)7, 1+~2/8>0,

is the survival function of the generalized Pareto distribution with the shape parameter
and scale parameter [3; see Balkema and de Haan (1974), and the overviews by Resnick
(1987) and Embrechts, Kliippelberg, and Mikosch (1997).

Therefore, we propose modeling the residual life beyond a finite, possibly unknown, suf-
ficiently high threshold using the generalized Pareto distribution (GPD). In line with He et
al. (2022), this approach recognizes that practitioners typically work with a finite threshold
and offers improved asymptotic theory, enabling us to derive non-degenerate joint limits
for central and tail estimators. By fitting the GPD to the tail using a censored maximum

likelihood method, we obtain a more efficient estimator of the tail survival distribution



while accommodating the possibility of the largest observation being censored. To avoid
estimating the asymptotic variance in its complex form and to enhance finite-sample perfor-
mance, we propose constructing confidence intervals using a randomly weighted bootstrap
method. This approach is straightforward to implement, and we prove that it is asymptot-
ically correct.

Our semiparametric model does not specify the central part of the distribution below
the threshold. By combining the KM estimator for the regions below the threshold with our
GPD estimator for the regions above, we develop a comprehensive asymptotic theory for a
refined survival distribution estimator that extends across the full domain, even beyond the
observed data range. This asymptotic theory applies to a much broader scope than existing
literature, such as Einmahl, Fils-Villetard, and Guillou (2008) and Beirlant, Guillou, and
Toulemonde (2010), which are only applicable to three specific cases where the endpoint of
the lifetime variable must be smaller than that of the censoring variables. We have relaxed
this assumption, as it is often violated in real-life applications, including the National Job
Training Partnership Act study to be discussed here.

The rest of the paper is organized as follows. Section 2 develops a comprehensive asymp-
totic theory for the point estimation procedure and a random weighted bootstrap solution
for interval estimation. Section 3 demonstrates the good performance of our refined estima-
tion in various settings where the KM estimator fails. Section 4 provides an application to
the national Job Training Partnership Act study, illustrating the advantages of our refined
estimator in tail inference and extrapolation beyond the observed data range. We conclude

the paper in Section 5. All the proofs are available in the supplementary document.



2 Asymptotic Theory

Consider a lifetime random variable 7" > 0 with a continuous survival function Sy and a
(generalized) quantile function Qy. For a threshold ug, possibly unknown, with exceedance
probability ag = Sp(ug) € (0,1), we make the following assumption regarding the ex-

ceedance T' — uy. Let (x); = max{z,0} denote the positive part of x.

Assumption 2.1 (Generalized Pareto Model). There exist a shape parameter 75 € R and

a scale parameter o,, > 0 with ag = Sp(u) such that, for x > 0

Yoz -1/7%
<1+ )+ ) 70#07

Uao

exp (—i), Y = 0.

UO‘O

P(T > up + z|T > ug) = G(z|70,0ay) =

The shape parameter 7, is called the extreme value index for the lifetime distribution.
When 7y < 0, there is a finite right endpoint 79 = ug— % in the support of the distribution
of T, ie., So(t) = 0 for all ¢ > 75. When 79 = 0, T'— ug | T > o has an exponential
distribution with mean o,,. When 79 > 0, 7" has a heavy tail with up to 1/7,-th finite
moments. Note that o, is also a function of ug through ag = Sp(ug).

Observe that, for any higher threshold u > wg, the exceedance T'— u | T > u fol-
lows the generalized Pareto distribution with the same shape parameter vy but a different
scale parameter o, = (op/a)0,,, where o = Sp(u) is the probability of exceeding w.
Specifically,

P(T>u+xz|T>u) =G| Y,04),

where G(x | 70,0,) denotes the generalized Pareto distribution function with shape pa-
rameter vy and scale parameter o,,.

Let T1,...,T, be independent lifetime random variables with a common survival func-
tion Sy satisfying Assumption 2.1. Let (1, ..., C, be independent censoring random vari-

ables, independent of the T;’s, with a possibly non-continuous and possibly defective com-
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mon survival function S¢ (that is, we may have lim Se(x) > 0). We observe the censored
Tr—00

data (X1,d1),...,(X,,d,), where

Let S =5y - Sc denote the survival distribution of Xj.

Let X1, < ... < X, denote the order statistics of X;,...,X,,. Denote by 9,, the
induced order statistics of dy, - - - , d,, associated with X;.,, such that (X;.,,d;,) € {(X;, ;) :
1 <i <n}. The Kaplan and Meier (1958) estimator of the lifetime survival function Sy is

given by

. 51’ n

~ n—i1 ’
So(t) = _ ) 4
o= 11 (255) (@)

Xi:ngt

Note that §0(Xn;n) = 0 if X,,., is not censored, but §0(Xn;n) > 0 otherwise. In the latter

case, one may redefine §0(x) =0 for x > X,,., if necessary.
Under Assumption 2.1, we can refine this estimator using the generalized Pareto model.
Let us choose a sufficiently large threshold, denoted by u, < X,.,, with an estimated

exceeding probability

an = Soun). (5)

Then, we can approximate Sy(t) for ¢t > u, by
So(t | 7,log o) = 8,G (t — un | 7, log o), (6)

where GG denotes the generalized Pareto survival function defined in Assumption 2.1 with

—X"Z;_“") > (0. One advantage of the

appropriate parameters (v,logo) such that 1 + it
generalized Pareto model is its ability to extrapolate beyond the data range, even when the

data maximum is below the endpoint of the true distribution support due to the censoring

mechanism.



To use (6), we estimate the parameters by the maximum likelihood method for censored
data. Given an exceedance X — u,, = x > 0 and the associated censoring indicator J, the

censored log-likelihood function (for 1+ vyx/o > 0) is given by

log (=G'(z|v,0)) d=1
((y,logolz,d) =

log G(x|v,0) 0=0
=6 log(—G'(zly,0)) + (1 — 6) log G(z|v,0)
=dlog AM(z]v,0) + log G(x[v,0),

where

__Gzlho) _ T\
Az, o) = G(zly,0) (1+ ax> o

is the hazard rate for the generalized Pareto model. Now, under Assumption 2.1, we can

compute the log-likelihood function explicitly given by
_ gl 1 gl
l(vy,logol|x,d) = —d3log (1+ —z) +logos — —log (1 + —x),
o 0 o
which is well-defined at v = 0 by
0(0,1og o|z, ) := lim (v, logo|x,d) = —dlogo — L
=0 o
The total log-likelihood for the sample exceedances is therefore given by

ZE(% log o| X — wp, 6;)1[X; > ],

=1

which is finite if and only if
1+ 9(Xpm — upn) /o > 0.
When there is no censoring (§; = 1 for all 7), the likelihood reduces to the standard one
for fitting GPD to the data X; = T; and one finds relevant asymptotic theory in He et al.
(2022).
We assume that our threshold statistic u,, satisfies the following conditions.

9



Assumption 2.2. The following conditions hold.

(a) The threshold w, = wu,(Xj,...,X,) is an arbitrary measurable statistic such that
So(uy) 2y & for some a € (0, avg), where Sy is the lifetime survival function and By

denotes convergence in probability;

(b) The survival function of C, namely S¢, is Lipschitz continuous and positive in a neigh-
borhood of the limiting threshold % := (o(1—a) and has a bounded variation on (ug, 7),
where 7 = sup{x : S(x) > 0} denotes the right endpoint of survival distribution S of

censored observation X; = min{T;, C;}.

The first condition allows a general threshold statistic, such as any appropriate quantile
statistic or any appropriate fixed value. The convergence rate towards the limiting threshold
can be arbitrary. The second condition on S¢ requires only continuity in a neighborhood
around the (limiting) threshold to avoid some irregular thresholding effects. The bounded
variation condition is only needed for using the integration by parts in our proofs, and it
allows for many discontinuous functions that are discontinuous at a countable set of points.

Using Gertsbakh (1995)’s formula, the unconditional Fisher information matrix

I(a) = —<E[V2 (v, logo | X; — @, 6)1[X > ] (1)

d (’V,IOgU)
associated with the limiting threshold « has the integral form
Z(a) = E[Z(yo,10g0s | Z)1]Z > 0]], Z=C —a,
where Z(v,logo | z) is the conditional Fisher information matrix given by

I(y.logo | 2) = / Gz | 7,0)s(1logo | 2)sT (v, logo | z) da
0

+G(z | v,0)w(v,logo | 2)w' (y,logo | 2),

10



where s(7,logo | ) = V(410g0) log(—=G'(z | 7,0)) denotes the lifetime score functions for
generalized Pareto distributions with respect to (v,log o) ", w(v,logo | ) = V(;.10g0) log G(z |
7,0) represents the censoring score function, and AT denotes the transpose of vector or
matrix A. Note that Z(vy,logo | 2z) is positive definite for every z > 0, and Z(a) is also
positive definite by part (b) of Assumption 2.2.

The following theorem establishes the existence of the maximum likelihood estimators
(MLEs) for the generalized Pareto parameters and their joint asymptotic normality with
the Kaplan-Meier (KM) estimator. Let S(z) = P(X; > z,0; = 1) denote the (improper)
survival distribution when the observation is not censored. Denote weak convergence by
‘% and let D(I) represent the (generalized) Skorokhod space of functions on the interval

I that may have jump discontinuities; see, e.g., Billingsley (1999), Section 12.

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 hold with a true parameter vy > —%.

(1) With probability tending to 1, there exists a mazimum likelihood estimator 0, = (7,logo)"

i the local parameter space

o, —{ocr: oo

< n—1/2+5} 7 (8)

for any e € (0,min{vyy+1/2,1/2}), where 0(()") = (70, log 0a,) " denotes the true values

adaptive to the threshold statistic u,.

(2) Any mazimum likelihood estimator sequence from part (i) is asymptotically normal
jointly with the product-limit process {So(t) : t < 7} for any point T with S(7) > 0 in
such a way that, in the product space D([0,Q(1 — 7)]) x R?

-~

(\/E<SO(') _1> ,\/ﬁ(:y\—%),\/ﬁ(i_1>> 4 (Z(S(+)), I, A)

So(+) an

where the process Z, T, and A are jointly Gaussian and related through Brownian

11



bridges By and By that are jointly Gaussian with cross-covariance structure
cov(By(s), Ba(t)) = min{p(s),t} — st, p(s) =P(S(X;) < s,0; = 1),
in the following way:

(i) Z(s) = [, Bu(w)a2dp(x) — [, «~'dBs(p(x))
(ii) (T,A)" = [Z(a)]~'T, where the Fisher information matriz (&) defined in (7) is

positive definite, and the random vector Y is given by

0 1 ~
T——| + [ BalS(@ul1 ~ at)ory (i
BE@-ay| 7

1
- [ BuS(Qu(1 — at))unny )t
0
with the vector functions

401 1 (m_—1>
Ulyo (t) = ,and V2,79 (t) = b
f}/ot’YO*l _t'YO*l

When vy = 0, we interpret the first entry of ve ., (t) as its continuous extension

given by t~!logt.

Recall our threshold statistic u,, and take any upper bound 7 > @ such that P(u, <
7) — 1. With the Kaplan-Meier estimator So(t),t € [0, u,], and the maximum likelihood
estimator 7, and o, we propose the following refined estimator of the lifetime survival

function on the whole positive line,

12



where G(+|v, o) is the generalized Pareto survival function defined in Assumption 2.1. Ac-
cordingly, we can estimate the mean of T, for ¥ < 1,
ir = / 8ot )t (9)
0

~

:/ " S (t)dt + Sp(un) x —2—. (10)
0 -7

Observe that, when u,, > ug, we can also expand the true survival function beyond u,, and

the mean and variance of T" adaptively as follows,

SO<t) = SO(“TL)G<t - Un|707 Uan)7

iy — /0 " ()t = /0 " So(t)dt + So(un)

Oa n

1—70.

The corollary below follows directly from the delta method.
Corollary 2.1. Under the conditions of Theorem 2.1,
(1) Vi (Sol-sun) = So()) 2 S() in D((0,00)), where
S(t) = So(t)Z(S(min{t, a})) + G(T, A) V1050 G((t — W)+ 170, 0a),

where

1 Joz | _ _70%/0a
% {log (1 + 00& ) 1+y0z /04 }
z/oa
1+voz/0a’

v(%loga)G(xWOa Ua) = G($|’Yoa Ua)

and, when vy = 0, first entry on the right-hand-side should be interpreted as it contin-

uous extension given by G(z]0,5) - 3 (§)2
(2) If provided that vy < 1,
Vi (fir = pir) = M

d o
where ‘=’ denotes convergence in distribution, and

Oa

— 7

M:/OEZ(S(t))dtJro‘zl {Z(S(a))+1 ! F+A}.

-7
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Using Vervaat (1972) Lemma (see also Appendix A in de Haan and Ferreira, 2006),
under the Skorokhod construction, the weak convergence of the refined estimator of the
survival function also implies the weak convergence of the refined quantile estimator under
mild differentiability conditions. Consider the refined estimator of the lifetime quantile

function

~

S5 (1—p) D> Qp,

~

Uy + QG(l _p/an;:}\/v /0-\) p< ana

where a,, = §0(un), ‘+~’ denotes the left-continuous inverse, and Qg(-;,0) is the quantile

function of G(- | v,0) given by

olog(l/p) ~=0.

In particular, when vy < 0, we can estimate the end-point 75 by

~

?0 - QG(]-’ /’)\/7 g

~—

=Up — =,

=) Q)

where the second equation holds with probability tending to one due to the consistency of
~.

The next corollary gives the weak convergence of our refined (high) quantile estimators.

Corollary 2.2. Under the conditions of Theorem 2.1, for any compact interval I C (0, 1)

on which Sy is strictly decreasing and continuously differentiable,
Vit (Qolum) = Qo)) 5 Q(),

in D(I) where Q(1 —p) = mS(Qo(l —p)). In particular, for every high quantile at

survival probability level p € (0, ),

vna (@o(l — piug) — Qo1 —p)> Ly (%)T (I, A) + Z(S(a)),

Op
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where

t ] 11—\ "
q(t):(/ (f)% 983 is, ) L t>0,
1\t S Y0

and it should be interpreted by continuity as (% (log t)2 , log t)T when 9 = 0. When vy < 0,

the same holds for p =0 in the sense that v/na(Ty — 7o) 4 _oa <—%F + A).

o

Remark 1. Although we study different statistics separately in Theorem 2.1 and Corollaries
2.1-2.2, their weak convergence holds jointly, with the limiting random elements defined

on the same probability space.

Remark 2. To ensure that our estimator of the endpoint is no smaller than the data
maximum, one can use 7o = max{u, — 0/7, Xp,} and the same asymptotic holds when
Yo > —1/2.

In general, the asymptotic variance above takes a complex form that depends on the
unknown functions Sy, S , and S. To facilitate convenient inference and improve finite-
sample coverage, we propose constructing confidence intervals using the random weighted
bootstrap procedure described below. Consider the true parameter 6, from one of the
following or its log transformation: pup, So(t) for some ¢t € (0,7), or Qo(1 — p) for some
p € (0,1), as well as the endpoint 79 = Qo(1) if it exists. Denote the refined estimator by

o~

6. We propose the following interval inference procedure for 6,:

(Step 1) Draw a random sample of size n from a subexponential distribution with mean
one and variance one, such as the standard exponential distribution. Denote the
sample as £§b), ceey ® > 0. Let él(lz be the induced order statistics of {51@ D=

1,...,n}, associated with X.,,.
(Step 2) Choose a threshold statistic ul? satisfying ul) = un~+0p(1), which may depend on

0 = (éb), . ,&@)TT, or simply as u,. Solve for the weighted maximum likelihood

15



estimators ¥ and ® by maximizing the following:
i@-(b)&('y, logo | X; —ul®, 6)1[X; > ul?].
i=1
Additionally, calculate the random weighted Kaplan-Meier (KM) estimator as follows:
— €\
SO(t,g ) - X:il;[ﬁt <1 ) iji gj(,b?)l> .

Replace (7,0, §0()) with (7®), 50, §0('; £®)) to obtain the random weighted estima-

tor 0.

(Step 3) Repeat the above steps B times to obtain the set of estimators {9\(1’)}5‘;1. For a
sufficiently large B, this process yields the conditional distribution of 0] given the
observations. Based on this, we can construct confidence intervals according to the

following theorem.

Theorem 2.2. Suppose the conditions of Theorem 2.1 hold. Consider the true parameter
0o from one of the following, or its log transformation, provided it exists: the lifetime mean
wr, a survival probability So(t) for somet € (0,7y), a quantile Qo(1—p) for somep € (0,1),
as well as the endpoint 79 = Qo(1) if it exists, or the extreme value index vy. Then for
any bootstrap threshold statistic v\ = u, + 0p(1) with o =1-F (uﬁlb)), the bootstrap

procedure is asymptotically valid in the following sense.

~(b
(1) With probability tending to 1, there exists a maximum likelihood estimator 0;) =

(7,1og )" in the local parameter space
= {0er o -6 <ntzel, (11)

-
for any € € (0,min{~yy + 1/2,1/2}), where Bén’b) = (yo,log Ua(b)> denotes the true

values adaptive to the bootstrap threshold.

16



(2) For a one-sided confidence interval at any confidence level a € (0,0.5),
P <90 < (9\—{—@((1)) —1—a, and P ((90 > g—En(a)) —1—a,

where

cn(a) = max{—q,(a), q,(1 —a)},

gn(p) = inf {x P (ém 0 < a|(X1,5), ..., (Xn,én)> > p} .

(3) For a two-sided confidence interval at any confidence level a € (0,1),

where
¢p(a) = inf {$ P (‘é\(b) - @\‘ < z|(Xy,01), .-, (Xn,én)> >1- a} : (12)

Furthermore, the results extend to 6y = o4, , as well as its log-transformation, if we main-

tain the same threshold ul) = Uy in the bootstrap samples.

Remark 3. For the two-sided confidence interval, one can also use a slightly more con-
servative option with higher coverage, c,(a) = ¢,(1 — a/2), which is also asymptotically

correct.

Observe that the theorem implies that one can construct a consistent estimator of the
asymptotic variance of 0 via cn(a), leading to the following corollary for two-sample tests
when combined with the asymptotic normality of 0 from Theorem 2.1 and Corollaries

2.1-2.2.

Corollary 2.3. Consider two independent samples indezed by s € {1,2}, with raw estima-

tors é\s and randomly weighted estimators @Eb) of the true parameter 0y 5, respectively, both

17



satisfying the conditions in Theorem 2.2. Let ¢, s(a) denote the bootstrap critical value (12)
for each sample s € {1,2} for some specific a € (0,1). Suppose we estimate the difference

80 = 90’2 — 0071 by é\E 52 — é\l. Then,
500 (8- 60) 5 N(0,1),

where

5a(0) = \/(%1(@))2 + (en2()?/@7H(1 — a/2), (13)

and ®~1 denotes the inverse of the standard normal distribution function.

Remark 4. As a byproduct, we obtain that the bragging (bootstrap robust aggregating)
estimator

(/9\3 = Median (é\(b) ’ (Xl, (51), ceey (Xn, 571)) (14>

is asymptotically indistinguishable from 5, and therefore the results above apply to both.
Since it is well known that maximum likelihood estimation for the generalized Pareto distri-
bution is not a globally concave problem and can suffer from local minima, we recommend

using this bragging estimator, especially in small samples.

3 Simulation Study

We consider three settings and compare the results for the Kaplan-Meier (KM) estimator
and our refined estimator based on the generalized Pareto model for estimating three
different sets of parameters for the lifetime distribution: the mean, survival probabilities,
and quantiles. The sample size is fixed at n = 2000, and the results are reported over 10,000
Monte Carlo replications. For each replication, we generate B = 500 bootstrap datasets to

construct two-sided confidence intervals using the bragging estimator from Remark 4.
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3.1 Unbounded but short lifetime

We revisit the example from the introduction. The lifetime variables, T;, and censoring
variables, C;, are both exponentially distributed with light tails and an extreme value index
of 79 = 0. We are interested in estimating the lifetime mean, ur = 1. While the mean of
T; is fixed, we vary the mean of the censoring variable C;, decreasing from 2, 1.8, ..., 1,
corresponding to an increase in the censoring rate from 1/3 to 1/2. We use the 90% sample
quantile as our threshold u,, and the confidence intervals of pur. We report the results for
the confidence intervals constructed based on the log transformation 6y = log ur to ensure

positive estimates. The results are very similar to those obtained using 6y = ur directly.
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Figure 4: Box plot of estimation errors (left) and the coverage probabilities of the 95% and
90% confidence intervals (right) for the lifetime mean using our refined estimator (GPD)
and the Kaplan-Meier (KM) estimator across different censoring rates. Both lifetime and

censoring variables follow an exponential distribution.

The box plots of the estimation error in Figure 4 show that the KM estimator suffers
from estimation bias. This bias causes the bootstrap confidence intervals to significantly
undercover the true lifetime mean. As the censoring rate increases, the likelihood of the

largest observations being censored grows (see Figure 2), resulting in a greater bias in the
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KM estimator and an almost linear decline in coverage probability, as shown on the right
side of Figure 4.

In contrast, our refinement using the generalized Pareto distribution (GPD) nearly elim-
inates the bias, and the bootstrap confidence intervals maintain relatively stable coverage
across different censoring rates, as depicted in Figure 4. The intervals achieve nearly correct

coverage at both the 95% and 90% confidence levels.

3.2 Bounded lifetime

We calibrate the lifetime variables T; from the generalized Pareto distribution with vy =
—0.4, which is well fitted to the Australian AIDS data in Venables and Ripley (2002)
by using the sample median as our threshold w,. We restrict the lifetime distribution to
have a bounded support of (0,8). We also calibrate the censoring variables C; from a
half Cauchy distribution with a median of 0.9 and support on (0, 00). The censoring rate
is approximately 64%. Figure 5 shows that our refined estimator outperforms the KM
estimator beyond the threshold, exhibiting a smaller median absolute estimation error and
shorter confidence intervals on average while maintaining nearly correct coverage levels of
95% and 90% at each quantile level when applying the random weighted bootstrap method.
Our generalized Pareto estimator loses slight coverage probability in very high quantiles
close to the endpoint, primarily due to a small probability in finite samples for the extreme
value index estimator 7 being close to 0. This issue is well-documented in extreme value
theory even without censoring(see, e.g., Li and Peng, 2012) and typically diminishes as the
sample size increases, owing to the consistency of 7. However, addressing this finite-sample

problem is beyond the scope of this paper.
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Figure 5: Comparison of the performance between the Kaplan-Meier (KM) estimator and
our refined estimator (GPD) for survival probabilities on a log scale, i.e., log Sy(t), across
different quantiles . From left to right are the median absolute error, average length of
the 95% confidence intervals, and coverage probabilities of the 95% and 90% bootstrap
confidence intervals. The lifetime is generalized Pareto with endpoint 75 = 8, and the

censoring variable is half Cauchy.
3.3 Unbounded long lifetime censored by bounded variable

We calibrate the quantiles of the lifetime variable T; from our empirical application to
unemployment duration data in the next section, using the generalized Pareto distribution
with 79 = 0.6, unit scale, and full support on (0, 00). This distribution has a finite mean of
approximately 2.5 but an infinite variance. The censoring variables are defined as C; = 3B;,
where B; follows a Beta(4, 1) distribution, yielding a censoring rate of approximately 24%.
We fix the threshold to be u,, = 0.5.

In this setting, unlike the previous examples, the outcome X; = min{7;, C;} is bounded
by 7 = 3 due to censoring, while the lifetime variable is unbounded. To make the KM
estimator feasible for quantiles beyond the endpoint 7 = 3, we extrapolate linearly beyond

the data range. The generalized Pareto estimator, on the other hand, naturally extrapolates
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and requires no special adjustment.
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Figure 6: Comparison of the performance between the Kaplan-Meier (KM) estimator and
our refined estimator (GPD) for quantiles on a log scale, i.e., logQo(p), across different
quantile levels p from 0.1 to 0.9. From left to right are the median absolute error, average
length of the 95% confidence intervals, and coverage probabilities of the 95% and 90%
bootstrap confidence intervals. The vertical line indicates the quantile level of endpoint

7 = 3 with respect to the lifetime distribution.

Figure 6 shows that our refined estimator performs similarly to the KM estimator in the
central region but significantly outperforms it around and beyond the endpoint, showing
smaller median estimation error and shorter confidence intervals on average. The KM
estimator performs well until it approaches the outcome endpoint, approximately the 0.82
quantile of the lifetime distribution, after which its estimation error increases dramatically.
In contrast, the extrapolation based on the fitted generalized Pareto distribution provides
a smooth transition beyond the outcome endpoint, resulting in a substantially smaller
median absolute error and shorter confidence intervals on average. Moreover, the bootstrap
confidence intervals based on our refined estimator maintain almost correct coverage, while

those based on the KM estimator tend to undercover, even when they are much wider,
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beyond the data range.
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Figure 7: Comparison of the performance between the Kaplan-Meier (KM) estimator and
our refined estimator (GPD) for the difference in quantiles, on a log scale, over two inde-
pendent samples. From left to right are the median absolute estimation error, average of
the estimated standard error, and rejection probabilities of the two-sided t-test for equal
quantiles at the 5% and 10% significance levels. The vertical line indicates the quantile

level of the endpoint 7 = 3 with respect to the lifetime distribution.

Next, we show that our bootstrap procedure can be used for a two-sample test according
to Corollary 2.3. We generate another independent sample from the same data-generating
process but with half the sample size, that is, a sample size of 1000. Then, we estimate
the difference in their quantiles on a log scale and evaluate the rejection probability of
the two-sided t-test of quantile equality at significance levels of 5% and 10%, using the
bootstrapped standard error (13) with a = 0.1 (the results for a = 0.05 are similar and
hence omitted).

Again, our refined estimator outperforms the KM estimator almost everywhere above
the threshold, especially beyond the endpoint, as shown in Figure 7. The KM estimator

suffers from large estimation errors in the tail, resulting in nearly zero rejection rates around
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and beyond the endpoint. In contrast, our refined estimator maintains almost correct size

across most quantile levels.

4 Empirical Illustration

We illustrate the advantage of our refined estimator by analyzing a US dataset from the
national job training study initially analyzed by Bloom et al. (1997). This study is a
large-scale randomized experiment evaluating the programs funded by the Job Training
Partnership Act (JTPA) of 1982. Each individual was randomly assigned to either the
control or treatment group. About 2/3 of the individuals were assigned to the treatment
group, so they were allowed to enroll in a JTPA-funded training program. The rest, 1/3 of
the individuals assigned to the control group, were generally excluded from receiving JTPA
services for 18 months, though they may still participate in another training program.
Following Abadie, Angrist, and Imbens (2002), we split the analysis for females and males.
Furthermore, we split the sample into two subsamples according to the random assignment.

We are interested in the duration 7; between the treatment assignment and finding
employment as in Frandsen (2015) and Ba et al. (2017). However, this duration is censored
by the duration C; between the random assignment and the follow-up interview. Since the
follow-up surveys were scheduled relative to the treatment assignment date rather than a
fixed calendar date, we consider these censoring events to be independent, as argued by
Frandsen (2015).

We obtained the cleaned dataset directly from the online supplement of Beyhum,
Tedesco, and Van Keilegom (2024), which consists of 7,876 individuals with no missing
values in their analysis. The censoring rate is similar across the control and treatment

groups, with approximately 15% for males and 24% for females. To convert the duration
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data from days to years, we divide the duration in days by 365.

We then fit censored generalized Pareto models to the long-term unemployment duration
data by taking the conventional threshold as 27 weeks (approximately half a year) to all
groups divided by treatment assignment and sex. Figure 8 demonstrates the good fit of the
generalized Pareto model to the quantile function obtained from the KM estimator across
all groups. The quantile function for the treatment group is almost everywhere lower than
the control group for the females, while the quantile function for the male treatment group
is similar to the male control group at the lower quantile levels. This aligns with Abadie,
Angrist, and Imbens (2002)’s observation that quantile treatment effects for males are only

significant at higher quantiles.
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Figure 8: Quantile function based on the KM estimator and our refined estimator (GPD).
The dotted line shows the threshold, and the dashed line shows the maximum of the

uncensored duration over both control and treatment groups.

The KM estimator of the quantile function is truncated at the maximum uncensored

duration within each group, as the largest observations are censored. This truncation
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results in a substantial underestimation of the duration mean compared to our refined
estimator, as shown in Table 1. We also report the extreme value index 7 and the scale
parameter o for the fitted generalized Pareto model. Our refined estimator, benefiting from
extrapolation, yields values more than four times higher than the KM estimator for females
and more than twice as high for males. This large difference arises because the fitted tail of
the lifetime distribution is too heavy to maintain a finite variance, with an extreme value
index 7 > 1/2 for all groups except the male treatment group (for which we could not
reject this null hypothesis either).

The fitted generalized Pareto parameters are similar between the treatment and control
groups, suggesting that the hazard rate beyond the threshold is comparable. In fact,
in an unreported analysis, we cannot reject the equality of these parameters using the
bootstrap confidence interval derived from Corollary 2.3. This suggests that the conditional
training effect becomes insignificant given that a female or male individual has already been

unemployed for more than 27 weeks. This finding is consistent with Ba et al. (2017).

Lifetime Mean Jip

Female, Control | Female, Treatment | Male, Control | Male, Treatment

KM 0.59 0.59 0.55 0.53

GPD 2.66 2.39 1.31 1.12

Generalized Pareto Parameters

Female, Control | Female, Treatment | Male, Control | Male, Treatment

0.69 0.71 0.51 0.44

2)

1.20 0.98 0.94 0.95

Q)

Table 1: Comparison of the KM estimator and GPD estimator of the lifetime mean.

On the other hand, we find unconditional effects at various quantile levels. To test for
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Figure 9: The pointwise t-statistic for testing the equality of quantiles between the control

and treatment groups across various quantile levels.

the equality of (unconditional) quantiles between the control and treatment groups, we
present in Figure 9 the pointwise ¢-statistic, constructed using the bootstrapped standard
error from Corollary 2.3 with @ = 0.1 (the results for a = 0.05 are nearly identical and are
omitted). Like in our simulation study, the KM estimator suffers from size issues and yields
only small ¢-statistics at high quantile levels. In contrast, our refined estimator consistently
produces large negative t-statistics for females across every quantile level, while for males,

the t-statistics remain small at the lower quantiles.

5 Concluding Remarks

The Kaplan-Meier (KM) estimator is widely used in survival analysis to estimate the dis-
tribution function under censoring, but it is reliable only within the observed data range.
When the largest observation(s) are censored, the KM estimator becomes improper, leading

to significant bias in estimating tail information beyond the range, as well as in estimating
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the mean of the lifetime distribution if the tail is not negligible. Motivated by extreme value
theory, we propose a refined method by fitting a generalized Pareto distribution (GPD) be-
yond a finite but sufficiently high threshold. While we find the GPD model highly effective
in practice, developing a distribution-free goodness-of-fit test remains an important avenue
for future research.

Our approach combines the non-parametric robustness of the KM estimator in the
central region with the parametric efficiency of the GPD in the tail. This semiparamet-
ric method allows for reliable extrapolation beyond the data range. We have developed
a comprehensive theory establishing the asymptotic normality of our refined estimator,
along with the asymptotic validity of an easy-to-implement random weighted bootstrap
method for inference. This bootstrap procedure performs well in finite-sample settings, as
demonstrated by both simulation studies and empirical applications.

Additionally, we provided a straightforward extension of our approach for a two-sample
test, which can be useful for causal analysis, as illustrated in our empirical application to
a large-scale job training study. Extending this approach to a regression framework could

yield more insightful analysis and is an interesting direction for future work.

SUPPLEMENTARY MATERIAL

The supplementary material includes the proofs for all the theorems from Section 2.
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