
Exercise on Template Attacks

1 Dataset and Cryptographic Implementation

1. The provided dataset was captured using the Chipwhisperer-Lite device1. The
captured traces record 100k encryptions in an ARM-Cortex-M4 CPU using the
AES-128 algorithm. The dataset can be downloaded here:

https://doi.org/10.21942/uva.25377694

The dataset is available in both Python npy format and in Matlab mat format. We
recommend either language for coding the exercise.

2. The purpose of the exercise is to create templates that can distinguish between
the 256 values k of a single byte i.e. k ∈ {0, 1, . . . , 255}

3. The provided dataset consists of a training set (traces train), a validation set
(traces valid) and a test set (traces test). The dataset partitioning is done
in an 80-10-10 manner i.e. 80% of the data is used for training, 10% for validation
and 10% for testing. Thus the training set contains 80k traces, the validation set
contains 10k traces and the test set contains 10k traces. Every trace consists of
100 time samples.

4. The partitioned dataset also contains the related labels i.e. 80k labels for training
(labels train), 10k labels for validation (labels valid) and 10k labels for testing
(labels test). Every label is a single-byte value k ∈ {0, 1, . . . , 255} and is equal
to the output of a single AES sbox during the 1st round of AES-128. Note that
recovering the single-byte sbox output k through a template attack is equivalent to
recovering a single byte of the AES-128 round key, since the plaintext is typically
known.

2 Splitting and Preprocessing the Dataset

1. Group Splitting. In the training dataset, use the the values of the 80k training
labels to split the training traces into 256 groups G0, G1, . . . , G255, each containing
the data of every class, in the following manner:

1https://rtfm.newae.com/Capture/ChipWhisperer-Lite/

1

https://doi.org/10.21942/uva.25377694
https://rtfm.newae.com/Capture/ChipWhisperer-Lite/

G0 = {all training traces such that training label = 0}

G1 = {all training traces such that training label = 1}
...

G255 = {all training traces such that training label = 255}

Repeat the exact same process in the 10k-trace validation set (using the validation
labels), producing groups V0, V1, . . . , V255 and finally in the 10k-trace test set (using
the test labels), producing groups H0, H1, . . . ,H255.

2. Preprocessing (optional task). Before constructing the side-channel templates,
many analysts perform preprocessing i.e. they apply techniques such as resampling,
frequency filtering, denoising, interpolation and others in order improve the signal
quality. After completing all the tasks of the template exercise, you may select
any preprocessing technique and apply it to the dataset. Investigate the effect of
the chosen technique on the accuracy of the template attacks.

3 Reduced Templates

1. Template Building. In the training set, we have groups G0, G1, . . . , G255 each
representing a class. You will use these groups to construct the reduced templates
for every class, by applying the following steps:

Assume that the group G0 contains |G0| traces t0i with i = 1, 2, . . . , |G0|2. The
dimensions of each trace t0i are 1× 100, since each trace is a vector with 100 time
samples. Compute the reduced template r0 for class 0 as follows:

r0 =
1

|G0|

|G0|∑
i=1

t0i

Note that the dimensions of r0 are also 1×100. Repeating this process for the rest
of the groups (G1, G2, . . . , G255), compute:

rk =
1

|Gk|

|Gk|∑
i=1

tki , for k = 1, 2 . . . , 255

where |Gk| = number of traces in group Gk, tki are the traces from group Gk,
indexed for i = 1, 2, . . . , |Gk| and rk is the reduced template for class k.

2The term |G0| denotes the “cardinality” of group 0.

2

The 256 vectors r0, r1, . . . , r255 are the reduced templates for all 256 classes. To
perform the necessary vector operations you can use Python numpy.mean or the
Matlab mean function.

2. Template Matching. In the test set, we have groups H0, H1, . . . ,H255. You will
use these groups to compute the total accuracy3 of the reduced template classifier.

For a single trace t0i in group H0 with i ∈ {1, 2, . . . , |H0|}, you can compute the
score w.r.t. class 0, denoted as score0 , using the inner product, as follows:

score0 = (t0i − r0) ∗ (t0i − r0)
⊺

The score0 quantifies the distance between the 100-dimensional vectors t0i and r0
i.e. it quantifies how well does the trace t0i match to the reduced template for class
0. Note that score0 is a scalar i.e. it has dimensions 1× 1. You must compute the
matching score between trace t0i and all 256 reduced templates.

scorek = (t0i − rk) ∗ (t0i − rk)
⊺, for all k = 0, 1, . . . , 255

We now use k∗ to denote the k ∈ {0, 1, . . . , 255} for which the scorek is minimum.
Finding this k∗ means that you found the best matching class for trace t0i , according
to the reduced template classifier.

k∗ = argmink (scorek) , with k ∈ {0, 1, . . . , 255}

Using k∗ you can compute the classifier accuracy. Since trace t0i belongs to group
H0 (and thus class 0), then classifying t0i with an ideal classifier should result in
k∗ = 0 and you would have a hit. If that doesn’t happen, then you would have a
miss. Using this principle, count the number of hits in group H0 and continue by
counting the number of hits in groups H1, H2, . . . ,H255. By summing the number
of hits you can now compute the accuracy:

accuracy =
total no. of hits

total no. traces in test set
=

total no. of hits

10000

3. Random Classifier. After training and computing the accuracy in the test set,
a sanity check is to compare the obtained accuracy to that of a random classifier:

accuracy ≶
1

no. of classes
=

1

256
3Note that in the side-channel literature the accuracy of a classifier is often referred to as the “Success

Rate (SR)” of the attack.

3

4. Higher-Order Accuracy (optional task). The standard accuracy metric counts
how many times the correct4 class is the top guess of the classifier. In the context
of side-channel attacks, we are also interested whether the correct class is within
the top-m guesses of the classifier and we refer to that metric as accuracy (or
success rate) of order m.

accuracy-order-m =
total no. of top-m hits

total no. traces in test set

For example, assume test trace t0i from group H0 (and thus from class 0). For that
trace we compute 256 scores (score0, score1, score2, . . . , score255) and then order
them from minimum (best) to maximum (worst) from left to right.

ordered scores = (scorem0 , scorem1 , scorem2 , . . . , scorem255)

The index m0 denotes the index of the minimum score and the index m255 denotes
the index of the maximum score. Ideally, since trace t0i comes from class 0, it
should be that scorem0 = score0, i.e. the best score index m0 should be equal to
the ground truth class 0 and since m0 = 0 we would have a top-1 hit. However, if
the index 0 is in the top-5 i.e. if 0 ∈ {m0,m1,m2,m3,m4}, then we can say that
we have a top-5 hit instead.

Using this description, the constructed reduced templates (r0, r1, . . . , r255) and the
test set, compute the accuracy-order-5 metric. Note that achieving a fairly high
accuracy-order-5 across the 16 AES-128 key bytes implies that the adversary can
brute-force the remaining candidates, right after the side-channel attack, to recover
the full key. For example, consider 16 separate template attacks targeting the 16
key bytes of AES-128. Ideally, every attack should place the correct key byte at
the top-1 position. Still, even if the correct key byte is placed in the top-5 instead,
this implies that an adversary can recover the full 16-byte key after 516 ≈ 238 key
guesses.

4 Full Template Attack

1. Dimensionality Reduction. Before training the full templates, you will reduce
the dataset dimensionality using principal component analysis (PCA)5. The goal is
to reduce the 100-dimensional traces to f -dimensional traces with f < 100. Apply
the following steps:

4Correct in the sense that it corresponds to the ground truth.
5Dimensionality reduction in the side-channel literature is often reffered to as “Point of Interest (PoI)

selection”. The PCA technique for full templates can be found here: https://www.iacr.org/archive/
ches2006/01/01.pdf

4

https://www.iacr.org/archive/ches2006/01/01.pdf
https://www.iacr.org/archive/ches2006/01/01.pdf

(a) Compute the mean vector r̄ of the 256 reduced template vectors rk with
k = 0, 1, . . . , 255. The computed vector r̄ has dimensions 1× 100.

r̄ =
1

256
∗

255∑
k=0

rk

(b) Compute the matrix B using the outer product (rk − r̄)⊺ ∗ (rk − r̄) as follows.
The computed matrix B has dimensions 100× 100.

B =
1

256
∗

255∑
k=0

(rk − r̄)⊺ ∗ (rk − r̄)

(c) Compute the singular value decomposition of matrix B and decompose B to
matrices U , S, V such that B = U ∗ S ∗ V ⊺.

(U, S, V) = svd(B)

In Python you can use the scipy.linalg.svd and in Matlab the svd function
to perform the decomposition. The matrix U has dimensions 100× 100.

(d) Select the number f of dimensions (principal components) that you want
by selecting the first f columns u1,u2, . . . ,uf of matrix U and produce the
reduced matrix Ured. The dimension of every column ui is 100× 1.

U =
[
u1 u2 . . . u100

]
Ured =

[
u1 u2 . . . uf

]
The computed matrix Ured has dimensions 100 × f . In Python you can use
U[:,0:f] and in Matlab you can use U(:,1:f).

(e) Reduce the dimensionality of every trace t in the training set, the validation
set and the test set by projecting the trace t to a lower dimension trace tred,
using the reduced matrix Ured as follows:

tred = t ∗ Ured

Note that the the trace t has dimensions 1× 100, thus the reduced trace tred
has dimensions 1× f with f < 100.

(f) After reducing the dimension of every trace, make sure that all the training,
validation and testing groups Gk, Vk, Hk with k = 0, 1, . . . , 255 contain traces
with f time samples instead of 100.

2. Template Building. After reducing the dimension of every trace from 100 to
f , the training set contains reduced groups G0, G1, . . . , G255, each representing a
class. You will use these groups to construct the full templates, by applying the
following steps:

5

(a) Mean Vector. Compute the mean vector mk for all groups Gk with k =
0, 1, . . . , 255. The mean vector mk and the trace tki have dimensions 1× f .

mk =
1

|Gk|

|Gk|∑
i=1

tki , for k = 0, 1, . . . , 255

(b) Covariance Matrix. Compute the covariance matrix Σk for all groups Gk

with k = 0, 1, . . . , 255. The covariance matrix Σk has dimensions f × f .

Given vectors x =
[
x1 x2 . . . xn

]
and y =

[
y1 y2 . . . yn

]
we define the co-

variance between vectors x and y as follows:

cov(x,y) =
1

n− 1

n∑
i=1

(xi − µx) ∗ (yi − µy)

where µx =
1

n

∑n
i=1 xi, µy =

1

n

∑n
i=1 yi

The covariance matrix Σk for class k is defined as the he pairwise covariance
between each column combination in the matrix Gk, with the dimensions of
Gk being |Gk| × f .

Σk(i, j) = cov(column i of Gk, column j of Gk), for i, j ∈ {0, 1, . . . , f}

You can use the Python numpy.cov or the Matlab cov function to compute
directly the formulas above for all k = 0, 1, . . . , 255.

(c) Pooled Covariance Matrix. To improve numerical stability, aggregate all
covariance matrices to a single one6. Compute the pooled covariance matrix
across all 256 classes as follows:

Σpool =
1

256

255∑
k=0

Σk

The 256 tuples (mk,Σpool) are the full templates for the 256 classes.

3. Template Matching. After reducing the dimension of every trace from 100 to
f , the validation set contains groups V0, V1, . . . , V255. You will use these groups to
compute the total accuracy of the full template classifier, by applying the following
steps:

(a) Probability Density Function Scoring. For a single trace t you could
compute the score w.r.t. class k, denoted as scorek , using the multivariate
normal probability density function (pdf), as follows:

6This improvement was suggested here: https://eprint.iacr.org/2013/770.pdf

6

https://eprint.iacr.org/2013/770.pdf

scorek =
1√

(2π)f ∗ det(Σpool)
∗ exp

(
−1

2
(t−mk) ∗ Σ−1

pool ∗ (t−mk)
⊺
)

The scorek is the “likelihood” that the f -dimensional vector t originates from
the multivariate normal distribution N (mk,Σpool). One should compute the
matching score between the trace t and all 256 full templates and find the
maximum. In Python you can use scipy.stats.multivariate normal.pdf

and in Matlab mvnpdf.

(b) Simplified Score. Unfortunately, the score formula above will only work
for f being small. Large values in the dimension f may result in extremely
small score values and may cause numerical errors. We thus simplify scorek
to score′k by applying the natural logarithm function:

loge(scorek) = loge

(
1√

(2π)f ∗ det(Σpool)

)
+

(
−1

2
(t−mk) ∗ Σ−1

pool ∗ (t−mk)
⊺
)

The first term of the sum is constant across all 256 classes and can be ignored.
Thus, we are left with the simplified score score′k whose formula will not
encounter numerical problems for larger values of f .

score′k = −1

2
(t−mk) ∗ Σ−1

pool ∗ (t−mk)
⊺

We now use k∗ to denote the k ∈ {0, 1, . . . , 255} for which the score′k is
maximum. Finding this k∗ means that you found the best matching class for
trace t, according to the full template classifier.

k∗ = argmaxk
(
score′k

)
, with k ∈ {0, 1, . . . , 255}

Using this principle, count the number of hits for the traces in the full val-
idation set i.e. in groups V0, V1, . . . , V255. Compute the accuracy on the
validation set.

(c) Classifier Fine-Tuning. Notice that your choice of f during the dimen-
sionality reduction step affects the obtained accuracy in the validation set.
Repeat the training-validation process with various choices of f in order to
find one that maximizes the accuracy in the validation set. This classifier
fine-tuning should be done using only the validation set and not using the
test set.

(d) Classifier Testing. Following the fine-tuning, use a good choice for the value
f and compute the accuracy of the full template classifier in the test set by
counting the hits in groups H0, H1, . . . ,H255.

7

(e) Multi-trace Attack (optional task). So far the classifier performed a
single-trace attack i.e. it tried to classify every trace in the test set indepen-
dently and reported the achieved accuracy. A multi-trace attack aggregates
traces from the same class before making a final decision.

Assume that test traces t1, t2, . . . , t10 originate from the same unknown class.
The multi-trace attack could average the 10 traces to denoise the signal and
then compute the classifier score′k for k = 0, 1, . . . , 255 to decide what is the
best matching template.

t̄ =
1

10

10∑
i=1

ti

score′k = −1

2
(t̄−mk) ∗ Σ−1

pool ∗ (t̄−mk)
⊺, for k = 0, 1, . . . , 255

Alternatively, the multi-trace attack could compute the scorek product for
all 10 test traces that originate from the same unknown class.

productk = scorek(t1) ∗ scorek(t2) ∗ · · · ∗ scorek(t10)

where scorek(ti) is the multivariate normal pdf of vector ti

Applying the natural logarithm function on productk and removing constant
terms, we get the simplified multi-trace score′′k as follows:

score′′k = loge(productk) =

loge(scorek(t1)) + loge(scorek(t2)) + · · ·+ loge(scorek(t10)) ≈
10∑
i=1

score′k(ti)

where score′k(ti) = −1

2
(ti −mk) ∗ Σ−1

pool ∗ (ti −mk)
⊺

Using this principle, perform a multi-trace attack on the test set groups
H0, H1, . . . ,H255, using either form of trace aggregation and compute the
total accuracy. Make a plot that depicts the relation between the attack
accuracy (y-axis) and number of aggregated attack traces (x-axis).

8

	Dataset and Cryptographic Implementation
	Splitting and Preprocessing the Dataset
	Reduced Templates
	Full Template Attack

